• Title/Summary/Keyword: Transmission Loss Coefficient

Search Result 114, Processing Time 0.027 seconds

Noise Map Analysis for the Design of Noise Barrier at School Site (학교부지의 방음벽 설계를 위한 소음지도 해석)

  • Yun, Junho;Kim, Wonjin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.4
    • /
    • pp.232-238
    • /
    • 2012
  • In this study, the noise mapping simulation is executed to design an effective barrier reducing noise levels of a school site. The geographical features of the ambient site and the school buildings are modelled in detail in order to consider sound propagation, deflection, and absorption phenomena etc. The main sound source, sound power level of expressway, is estimated on the basis of measured noise levels at several points of the site. The noise mapping simulation is performed by using ENPro, environmental noise prediction program based on ISO 9613 to analysis the effectiveness of noise barrier. Consequently, the noise barrier is designed to meet an environmental noise standard and satisfy low cost and safety conditions.

Novel Optical Properties of Si Nanowire Arrays

  • Lee, Munhee;Gwon, Minji;Cho, Yunae;Kim, Dong-Wook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.179.1-179.1
    • /
    • 2014
  • Si nanowires have exhibited unique optical characteristics, including nano-antenna effects due to the guided mode resonance, significant optical absorption enhancement in wide wavelength and incident angle range due to resonant optical modes, graded refractive index, and scattering. Since Si poor optical absorption coefficient due to indirect bandgap, all such properties have stimulated proposal of new optoelectronic devices whose performance can surpass that of conventional planar devices. We have carried out finite-difference time-domain simulation studies to design optimal Si nanowire array for solar cell applications. Optical reflectance, transmission, and absorption can be calculated for nanowire arrays with various diameter, length, and period. From the absorption, maximum achievable photocurrent can be estimated. In real devices, serious recombination loss occurring at the surface states is known to limit the photovoltaic performance of the nanowire-based solar cells. In order to address such issue, we will discuss how the geometric parameters of the array can influence the spatial distribution of the optical field (resulting optical generation rate) in the nanowires.

  • PDF

Evaluations of the Acoustics Characteristics of Cellulose Absorbers (셀롤로오즈 흡음재의 음향적 특성 평가)

  • Yeon, Joon-oh;Kim, Kyoung-woo;Yang, Kwan-seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.760-765
    • /
    • 2013
  • Eco-friendly material applied to building would be one of the materials which is must developed for global environmental conservation and reduction of carbon dioxide. For development of eco-friendly material, a cellulose sound-absorbing material has been developed with waste paper through adjustment of various mix proportions. The developed cellulose sound-absorbing material has been tested for its acoustic properties such as acoustic absorptivity and dynamic elastic modulus. The absorptivity was evaluated by developing six samples and using impedance tube and reverberation chamber. As a result of the evaluation, 0.64(NRC) was secured in absorptivity and $4.7MN/m^3$ was indicated in dynamic elastic modulus. Also, for practical use of developed sound-absorbing material as inner heartwood in drywall, comparison test of sound reduction index was performed with existing glass wool sound-absorbing material and constructed drywall of gybsum board. The results have shown 55dB(Rw) of sound reduction index in glass-wool wall and 46dB(Rw) in cellulose.

  • PDF

Monte-Carlo Simulation for Exposure and Development of Focused Ion Beam Lithography (집속이온빔 리소그라피 (Focused Ion Beam Lithography)외 노출 및 현상에 대한 몬데칼로 전산 모사)

  • Lee, Hyun-Yong;Kim, Min-Su;Chung, Hong-Bay
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1246-1249
    • /
    • 1994
  • Thin amorphous film of $a-Se_{75}Ge_{25}$ acts as a positive resist in ion beam lithography. Previously, we reported the optical characteristics of amorphous $Se_{75}Ge_{25}$ thin film by the low-energy ion beam exposure and presented analytically calculated values such as ion range, ion concentration and ion transmission coefficient, etc. As the calculated results of analytical calculation, the energy loss per unit distance by $Ga^+$ ion is about $10^3[keV/{\mu}m]$ and nearly constant for all energy range. Especially, the projected range and struggling for 80 [KeV] $Ga^+$ ion energy are 0.0425[${\mu}m$] and 0.020[${\mu}m$], respectively. Hear, we present the results of Monte-Carlo computer simulation of Ga ion scattering, exposure and development in $a-Se_{75}Ge_{25}$ resist film for focused ion beam(FIB) lithography. Monte-Carlo method is based on the simulation of individual particles through their successive collisions with resist atoms. By the summation of the scattering events occurring in a large number N(N>10000) of simulated trajectories within the resist, the distribution for the range parameters is obtained. Also, the deposited energy density and the development pattern by a Gaussian or a rectangular ion beam exposure can be obtained.

  • PDF

An analysis of the ion penetration phenomena in amorphous $Se_{75}Ge_{25}$ thin film (비정질 $Se_{75}Ge_{25}$박막으로의 이온침투 현상 해석)

  • 이현용;정홍배
    • Electrical & Electronic Materials
    • /
    • v.7 no.5
    • /
    • pp.389-396
    • /
    • 1994
  • The bilayer film of Ag/a-S $e_{75.G}$ $e_{25}$ and the monolayer film of a-S $e_{75.G}$ $e_{25}$ act as a negative-type and a positive-type resist in focused ion beam lithography, respectively. Using a model which takes into account the ion stopping power, the ion projected range, the ion concentration implanted into resists and the ion transmission coefficient, etc., the ion resist parameters are calculated for a broad range of ion energies and implanted doses. Ion sources of A $r^{+}$, S $i^{++}$ and G $a^{+}$ are used to expose resists. As the calculated results, the energy loss per unit distance by Ga'$^{+}$ ion is about 10$^{3}$[keV/.mu.M] and nearly constant for all energy range. Especially, the projected range and struggling for 80[keV] G $a^{+}$ ion energy are 0.0425[.mu.m] and 0.020[.mu.m], , respectively and the resist thickness of a-S $e_{75}$ G $e_{25}$ to minimize the ion penetration rate into a substrate is 0.118[.mu.m].u.m]..u.m].

  • PDF

A Noise Prediction of Floating, Production, Storage and Offloading(FPSO) (부유식 석유생산.저장.하역선박의 소음해석)

  • Kim, Young-Hyun;Kim, Dong-Hae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.307-310
    • /
    • 2000
  • Recently, the demand for the Floating, Production Storage, and Offloading facility(FPSO) which has some economic and technical advantages, has increased in offshore oil production areas. The basic characteristics of a 343,000 DWT class FPSO which is being built in Hyundai Heavy Industries and shall be installed in offshore Angola, is almost same as that of oil carriers. However, she do not have self-propulsion system, but has additional facilities for oil production and positioning system. Main noise source contributing to the cabin noise of the accommodation, are classified into the machine in the engine room and the deckhouse, HVAC system, and the topside equipments. In general, the noise regulation for the offshore structure is much severer than that of the common commercial ships and the maximum acceptable sound pressure level of cabins is specified in 45dB(A). This paper describes the procedure of noise analysis along with its results. Noise analysis has been carried out for the case of emergency diesel generator running condition and the case of normal production condition and the results has been compared with the measurement results of the first case. Based on the results, proper countermeasures to reduce excessive noise level has been applied considering the characteristics of sources and receiver spaces and can be satisfied the specifications at all spaces.

  • PDF

Study on the Positioning Method using BLE for Location based AIoT Service (위치 기반 지능형 사물인터넷 서비스를 위한 BLE 측위 방법에 관한 연구)

  • Ho-Deok Jang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.1
    • /
    • pp.25-30
    • /
    • 2024
  • Smart City, a key application area of the AIoT (Artificial Intelligence of Things), provides various services in safety, security, and healthcare sectors through location tracking and location-based services. an IPS (Indoor Positioning System) is required to implement location-based services, and wireless communication technologies such as WiFi, UWB (Ultra-wideband), and BLE (Bluetooth Low Energy) are being applied. BLE, which enables data transmission and reception with low power consumption, can be applied to various IoT devices such as sensors and beacons at a low cost, making it one of the most suitable wireless communication technologies for indoor positioning. BLE utilizes the RSSI (Received Signal Strength Indicator) to estimate the distance, but due to the influence of multipath fading, which causes variations in signal strength, it results in an error of several meters. In this paper, we conducted research on a path loss model that can be applied to BLE IPS for proximity services, and confirmed that optimizing the free space propagation loss coefficient can reduce the distance error between the Tx and Rx devices.

A Study on Resonance Properties of a Terahertz Asymmetric Split-Loop Resonator Type Metamaterial for High Quality Factor (테라헤르츠 비대칭 분리고리공진기 메타물질의 높은 품질인자를 위한 공진 특성에 관한 연구)

  • Park, Dae-Jun;Ryu, Han-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.663-669
    • /
    • 2016
  • A terahertz asymmetric split-loop resonator (ASLR) was analyzed for use in high-sensitivity sensing applications. Its structural asymmetricity induces an asymmetric Fano resonance which has a high quality factor compared to the symmetric eigen-resonance. The variations of the resonant frequency, transmission coefficient, and quality factor of the ASLR in the eigen and Fano resonances are analyzed as a function of its structural asymmetricity. Also, the surface current densities on the ASLR in both resonances are calculated to analyze the main cause of the variations of its transmission characteristics. The surface current of the ASLR in the eigen resonance shows a dipole resonance, which increases the radiation loss and reduces the quality factor. On the other hand, the surface current of the ASLR in the Fano resonance shows a trapped or quadrupole mode which has a low radiation loss. Therefore, the ASLR operated in the Fano resonance has a high quality factor. Terahertz, high-performance filters and high sensitivity sensors can be developed based on our analysis results of the ASLR having a high quality factor. These high-performance devices based on terahertz metamaterials could increase the adoption of terahertz industrial applications.

Design and Performance Evaluation of Two-Layered Microwave Absorbers(Dielectric/Magnetic) for Wide Oblique Incidence Angles Used for ITS (ITS용 2층형 전파 흡수체(유전체/자성체) 설계 및 경사 입사 흡수 특성 해석)

  • Kim, Jae-Woong;Kim, Sung-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.11
    • /
    • pp.1217-1223
    • /
    • 2007
  • Advanced microwave absorbers for wide oblique incidence angles are required in many applications including wireless communication or vehicle identification in ITS(Intelligent Transport System) where 5.8 GHz DSRC(Dedicated Short Range Communication) system is applied. In this study, two-layered microwave absorber(with a laminate structure of dielectric/magnetic composites) has been designed for the achievement of low reflection coefficient over wide incidence angles at 5.8 GHz. Iron flake particles are used as the filler in the absorbing layer, and the magnetic composite sheet exhibits high magnetic loss due to ferromagnetic resonance in gigahertz frequencies. The surface layer of low dielectric constant containing small amount of carbon black is used as the impedance transformer. On the basis of transmission line theory, the reflection loss has been calculated for the two-layer structure with variation of incident angles for both TE(Transverse Electric) and TM(Transverse Magnetic) polarizations. At the optimum thickness of the composite layers, a low value of reflection loss(less than -10 dB) has been predicted for wide incidence angles up to $55^{\circ}$ which is in good agreement with the measured value determined by free-space measurement.

Energy Band Structure, Electronic and Optical properties of Transparent Conducting Nickel Oxide Thin Films on $SiO_2$/Si substrate

  • Denny, Yus Rama;Lee, Sang-Su;Lee, Kang-Il;Lee, Sun-Young;Kang, Hee-Jae;Heo, Sung;Chung, Jae-Gwan;Lee, Jae-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.347-347
    • /
    • 2012
  • Nickel Oxide (NiO) is a transition metal oxide of the rock salt structure that has a wide band gap of 3.5 eV. It has a variety of specialized applications due to its excellent chemical stability, optical, electrical and magnetic properties. In this study, we concentrated on the application of NiO thin film for transparent conducting oxide. The energy band structure, electronic and optical properties of Nickel Oxide (NiO) thin films grown on Si by using electron beam evaporation were investigated by X-Ray Photoelectron Spectroscopy (XPS), Reflection Electron Energy Loss Spectroscopy (REELS), and UV-Spectrometer. The band gap of NiO thin films determined by REELS spectra was 3.53 eV for the primary energies of 1.5 keV. The valence-band offset (VBO) of NiO thin films investigated by XPS was 3.88 eV and the conduction-band offset (CBO) was 1.59 eV. The UV-spectra analysis showed that the optical transmittance of the NiO thin film was 84% in the visible light region within an error of ${\pm}1%$ and the optical band gap for indirect band gap was 3.53 eV which is well agreement with estimated by REELS. The dielectric function was determined using the REELS spectra in conjunction with the Quantitative Analysis of Electron Energy Loss Spectra (QUEELS)-${\varepsilon}({\kappa},{\omega})$-REELS software. The Energy Loss Function (ELF) appeared at 4.8, 8.2, 22.5, 38.6, and 67.0 eV. The results are in good agreement with the previous study [1]. The transmission coefficient of NiO thin films calculated by QUEELS-REELS was 85% in the visible region, we confirmed that the optical transmittance values obtained with UV-Spectrometer is the same as that of estimated from QUEELS-${\varepsilon}({\kappa},{\omega})$-REELS within uncertainty. The inelastic mean free path (IMFP) estimated from QUEELS-${\varepsilon}({\kappa},{\omega})$-REELS is consistent with the IMFP values determined by the Tanuma-Powell Penn (TPP2M) formula [2]. Our results showed that the IMFP of NiO thin films was increased with increasing primary energies. The quantitative analysis of REELS provides us with a straightforward way to determine the electronic and optical properties of transparent thin film materials.

  • PDF