• Title/Summary/Keyword: Translational motion

Search Result 221, Processing Time 0.027 seconds

Kinematic Analysis of the Characteristics of Translational XYZ Micro Parallel Manipulator (병진운동을 하는 XYZ 마이크로 병렬형 머니퓰레이터의 기구학적 특성 분석)

  • Kim, Eun-Seok;Yang, Hyun-Ik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.441-450
    • /
    • 2007
  • In this study, a 3-DOF XYZ micro parallel manipulator utilizing compliance mechanism is developed and analyzed. In so doing, a matrix method is used to rapidly solve displacements of the designed kinematic structure, and then kinematic characteristics of the developed manipulator are analyzed. Finally, the design analysis of the kinematic characteristics by changing hinge thickness and structure to improve workspace and translation motion is performed to show that the performance of the developed manipulator is relatively superior to the other similar kind of manipulators.

Optimal Design of a 6-DOF Parallel Mechanism using a Genetic Algorithm (유전 알고리즘을 이용한 6자유도 병렬기구의 최적화 설계)

  • Hwang, Youn-Kwon;Yoon, Jung-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.560-567
    • /
    • 2007
  • The objective of this research is to optimize the designing parameters of the parallel manipulator with large orientation workspace at the boundary position of the constant orientation workspace (COW). The method uses a simple genetic algorithm(SGA) while considering three different kinematic performance indices: COW and the global conditioning index(GCI) to evaluate the mechanism's dexterity for translational motion of an end-effector, and orientation workspace of two angle of Euler angles to obtain the large rotation angle of an end-effector at the boundary position of COW. Total fifteen cases divided according to the combination of the sphere radius of COW and rotation angle of orientation workspace are studied, and to decide the best model in the total optimized cases, the fuzzy inference system is used for each case's results. An optimized model is selected as a best model, which shows better kinematic performances compared to the basis of the pre-existing model.

A Study for Roll characteristic of Railway Vehicle (철도차량의 Roll 특성에 관한 연구)

  • Yang, Hee-Joo;Lee, Kang-Wun;Park, Kil-Bae;Seong, Jae-Ho
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1184-1189
    • /
    • 2006
  • Railway vehicle have three translational motions-longitudinal, vertical and lateral, and three rotational motions-rolling, pitching and yawing caused by track irregularity, wheel and rail characteristic, dynamic behaviors etc. The rolling motion in vehicle mainly happens in cases of the vehicles stationary and running on canted track. When the vehicle positioned in stationary on canted track, vehicle is inclined toward inside of installed cant due to gravity component. When the vehicle has running on a track with cant deficiency, vehicle is inclined toward outside of installed cant due to centrifugal force. The roll coefficient(s) is defined as the ratio between the angle of inclination of the vehicle($\eta$) and the angle of the rail level($\alpha$). This paper has noted the test method, test result and analysis result to calculate the roll coefficient according to UIC505-5, international standard

  • PDF

Linear BLDC motor design for a ultra-precision stage (초정밀 Stage용 선형 BLDC 전동기 설계)

  • Kang, Do-Hyun;Hong, Jung-Pyo;Chang, Ki-Chan;Jeon, Jung-Woo;Chun, Young-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.274-276
    • /
    • 2000
  • Recently, the demands of the ultra-precision stage system, such as wafer stepper stages for photolithography, are increasing in the field of manufacturing and test equipment. Since the mechanical elements which convert rotational motion into translational introduce backlash and elasticity in the system, better performance of the drive could be achieved by the linear BLDC motor with appropriate servo control. The analytical design and the FEM analysis about linear BLDC motor is described in this paper. The performance of the servo-drive system will be evaluated through the comparison of results between the designed data and the measured data in the future.

  • PDF

Orientation of Liquid Crystal and Electro-Optic Characteristic Effect of dispersed Carbon nanotubes in In Plane Switching Cell (탄소 나노 튜브가 분산된 수평전기장을 이용한 액정 셀의 액정 방향성과 전기 광학특성 연구)

  • Jeon, Sang-Youn;Baik, In-Su;Lee, Seung-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.520-521
    • /
    • 2005
  • To observe the orientation of carbon nanotubes (CNTs) dispersed in nematic liquid crystal (NLC), CNT-doped homogeneously-aligned NLC cells driven by in-plane field was fabricated. The CNTs were aligned with a LC director in the initial state, whereas the CNTs disturbed the LC director above critical ac field. We observed motional textures in the form of vertical stripes in the local area between electrodes, which were associated with a deformation of the LC director orientation. This suggests that CNTs start to vibrate three dimensionally with translational motion. The hysteresis studies of voltage-dependent transmittance under dc electric field show that the amount of residual dc is greatly reduced due to ion trapping by CNT.

  • PDF

Dynamic Stability of a Vertical Cantilevered Pipe Conveying Fluid with Additional Spring Supports (부가 스프링 지지를 갖고 유동유체에 의한 외팔 수직 파이프의 동적 안정성)

  • Ryu, Bong-Jo;Jung, Seoung-Ho;Lee, Jong-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.12
    • /
    • pp.979-985
    • /
    • 2002
  • The paper presents the dynamic stability of a vertical cantilevered pipe conveying fluid and haying translational linear spring supports. Real pipe systems may have some elastic hanger supports or other mechanical attached parts. which can be regarded as attached spring supports. Governing equations are derived by energy expressions, and numerical technique using Galerkin's method is applied to the equations of small motion of the pipe. Effects of spring supports on the dynamic stability of a vortical cantilevered pipe conveying fluid are fully investigated for various locations and spring constants of elastic supports.

Molecular Dynamics Simulation Studies of a Model System for Liquid Crystals Consisting of Rodlike Molecules in NPT Ensemble

  • Lee, Chang Jun;Sim, Hun Gu;Kim, Un Chun;Lee, Song Hui;Park, Hyeong Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.3
    • /
    • pp.310-316
    • /
    • 2000
  • Molecular dynamics simulation studies for thermotropic liquid crystalline systems conposed of rodlike molecules with 6 Lennard-Jones interaction sites wre performed in NPT ensemble. Within the range of temperature studied, the system exhibited isotropic and smectic phase. For the characterization of the smectic phase, we examined the structure of the liquid crystalline phase via the radial distribution function, its longitudinal and transverse components to the director, and other orientational correlation function, its longitudinal and transverse components to the director, and other orientational correlation functions. In the smectic A phase, our results showed a large anisotropy in translational motion (i.e.,$D_⊥ >> D_∥$), and the decay of the collective orientational correlation function of rank two became slower than that of the single particle orientational correlation function of rank one. Comments on the spontaneous growth of orientational order directly from the isotropic phase are given.

Study on Optimal Design of Fault-Tolerant Spatial Redundant Manipulators (고장에 견디는 공간형 여유자유도 매니퓰래이터의 최적설계에 관한 연구)

  • Kim, Whee-Kuk;Kim, Dong-Ku;Yi, Byung-Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.4
    • /
    • pp.97-108
    • /
    • 1996
  • Optimal design of fault-tolerant, spatial type redundant manipulators is treated in this paper. Design objective is to guarantte three degree-of -freedom translational motions in the task space, upon failure of one arbitrary joint of 4 degree-of-freedom manipulators. Noticing the nonfault-tolerant characteristics of current, wrist-type industrial manipulators, five different fault-tolerant spatial-type manipulators which have 4 degree-of-freedom structures with one joint redundancy are suggested. Faault-tolerant character-sitics of two redundant manipulators anr investigated based on the analysis of the self-motion and the null-space elements. Finally, in order to maximize the fault-tolerant capability, optimal design is performed for a spatial-type manipulator with respect to the global isotropic index, and the performance enhancement of the optimized case is shown by simulation.

  • PDF

Visualization of Flow Field of Weis-Fogh Type Water Turbine Using the PIV (PIV를 이용한 Weis-Fogh형 수차의 유동장 가시화)

  • Ro, Ki Deok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.3
    • /
    • pp.191-197
    • /
    • 2017
  • In this study, the visualization of the unsteady flow field of a Weis-Fogh-type water turbine was investigated using particle-image velocimetry. The visualization experiments were performed in a parameter range that provided relatively high-efficiency wing conditions, that is, at a wing opening angle ${\alpha}=40^{\circ}$ and at a velocity ratio of the uniform flow to the moving wing U/V = 1.5~2.5. The flow fields at the opening, translational, and closing stages were investigated for each experimental parameter. In the opening stage, the fluid was drawn in between the wing and wall at a velocity that increased with an increase in the opening angle and velocity ratio. In the translational stage, the fluid on the pressure face of the wing moved in the direction of the wing motion, and the boundary layer at the back face of the wing was the thinnest and had a velocity ratio of 2.0. In the closing stage, the fluid between the wing and wall was jetted at a velocity that increased as the opening angle decreased; however, the velocity was independent of the velocity ratio.

Influence of Spring Constant at Fixed End on Stability of Beck's Column with Tip Mass (固定端 의 스프링 상수 가 末端質量을 가진 Beck′s Column 의 安定性 에 미치는 영향)

  • 윤한익;김광식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.606-612
    • /
    • 1985
  • On the stability of the Beck's column with a tip mass, the influence of the characteristics of the springs at the fixed end of the column are studied. The equations of motion and boundary conditions of this system are established by using the Hamiton's principle. On the evaluation of the stability of the column, t he effect of the shear deformation and rotatory inertial is considered in calculation. For the maintenance of the stability of the column, it is proved that the constant of the translational spring at the fixed end must be very large while th magnitude of the constant of the rotational spring at the fixed end has no effect. When the constants of the springs at the fixed end are small, it is also proved that the influence of the moment of inertial of the tip mass on the stability of the column are decreased and for the translational spring the degree of the decrease is more and more. Therefore it is found that the characteristics of the springs at the fixed end are very effective elements for the stability of the column when the columns subjected to a compressive follower force are designed.