• 제목/요약/키워드: Translation-Based Language Model

검색결과 51건 처리시간 0.02초

Simultaneous neural machine translation with a reinforced attention mechanism

  • Lee, YoHan;Shin, JongHun;Kim, YoungKil
    • ETRI Journal
    • /
    • 제43권5호
    • /
    • pp.775-786
    • /
    • 2021
  • To translate in real time, a simultaneous translation system should determine when to stop reading source tokens and generate target tokens corresponding to a partial source sentence read up to that point. However, conventional attention-based neural machine translation (NMT) models cannot produce translations with adequate latency in online scenarios because they wait until a source sentence is completed to compute alignment between the source and target tokens. To address this issue, we propose a reinforced learning (RL)-based attention mechanism, the reinforced attention mechanism, which allows a neural translation model to jointly train the stopping criterion and a partial translation model. The proposed attention mechanism comprises two modules, one to ensure translation quality and the other to address latency. Different from previous RL-based simultaneous translation systems, which learn the stopping criterion from a fixed NMT model, the modules can be trained jointly with a novel reward function. In our experiments, the proposed model has better translation quality and comparable latency compared to previous models.

어휘 번역확률과 질의개념연관도를 반영한 검색 모델 (Retrieval Model Based on Word Translation Probabilities and the Degree of Association of Query Concept)

  • 김준길;이경순
    • 정보처리학회논문지B
    • /
    • 제19B권3호
    • /
    • pp.183-188
    • /
    • 2012
  • 정보 검색에서 성능 저하의 주요 요인은 사용자의 질의와 검색 문서 사이에서의 어휘 불일치 때문이다. 어휘 불일치 문제를 해결하기 위해 본 논문에서는 어휘 번역확률을 이용한 번역기반 언어모델에 질의개념연관도를 반영한 검색 모델을 제안한다. 어휘관계 정보를 획득하기 위하여 문장-다음문장 쌍을 이용하여 어휘 번역확률을 계산하였다. 제안모델의 유효성을 검증하기 위해 TREC AP 컬렉션에 대해 실험하였다. 실험결과에서 제안모델이 언어모델에 비해 아주 우수한 성능향상을 보였고, 번역기반 언어모델에 비해서도 높은 성능을 나타냈다.

DNN 기반 수어 번역 모델을 통한 성능 분석 (Performance Analysis Using a DNN-Based Sign Language Translation Model)

  • 정민재;노승환;홍준기
    • 한국빅데이터학회지
    • /
    • 제9권1호
    • /
    • pp.187-196
    • /
    • 2024
  • 본 연구에서는 수어의 좌표를 압축하여 학습 시간을 획기적으로 단축시킬 수 있는 DNN (Deep Neural Network) 기반 수어 번역 모델을 제안하고 수어 좌표 압축 유무에 따른 정확도와 모델 학습 시간을 비교 분석하였다. 제안한 모델을 사용하여 수어를 번역한 결과, 수어 영상을 압축하기 전과 후의 정확도는 약 5.9% 감소한 반면, 학습 시간은 56.57% 감소하여 수어 번역 정확도 손실 대비 학습 시간에서 많은 이득을 얻는 것을 확인하였다.

독-한 명사구 기계번역시스템의 구축 (The Construction of a German-Korean Machine Translation System for Nominal Phrases)

  • 이민행;최승권;최경은
    • 한국언어정보학회지:언어와정보
    • /
    • 제2권1호
    • /
    • pp.79-105
    • /
    • 1998
  • This paper aims to describe a German-Korean machine translation system for nominal phrases. Besides, we have two subgoals. First, we are going to revea linguistic differences between two languages and propose a language-informational method fo overcome the differences. The method is based on an integrated model of translation knowledge, efficient information structure, and concordance selection. Then, we will show the statistical results about translation experiment and its evaluation as an evidence for the adequacy of our linguistic method and translation system itself.

  • PDF

번역: 대응과 평가 (Translation:Mapping and Evaluation)

  • 장석진
    • 한국언어정보학회지:언어와정보
    • /
    • 제2권1호
    • /
    • pp.1-41
    • /
    • 1998
  • Evaluation of multilingual translation fundamentally involves measurement of meaning equivalences between the formally mapped discourses/texts of SL(source language) and TL(target language) both represented by a metalanguage called IL(interlingua). Unlike a usaal uni-directional MT(machine translation) model(e.g.:SL $\rightarrow$ analysis $\rightarrow$ transfer $\rightarrow$ generation $\rightarrow$ TL), a bi-directional(by 'negotiation') model(i.e.: SL $\rightarrow$ IL/S $\leftrightarrow$ IL $\leftrightarrow$ IL/T \leftarrow TL) is proposed here for the purpose of evaluating multilingual, not merely bilingual, translation. The IL, as conceived of in this study, is an English-based predicate logic represented in the framework of MRS(minimal recursion semantics), an MT-oriented off-shoot of HPSG(Head-driven Phrase Structure Grammar). In addition, a list of semantic and pragmatic checkpoints are set up, some being optional depending on the kind and use of the translation, so sa to have the evaluation of translation fine-grained by computing matching or mismatching of such checkpoints.

  • PDF

수어 동작 키포인트 중심의 시공간적 정보를 강화한 Sign2Gloss2Text 기반의 수어 번역 (Sign2Gloss2Text-based Sign Language Translation with Enhanced Spatial-temporal Information Centered on Sign Language Movement Keypoints)

  • 김민채;김정은;김하영
    • 한국멀티미디어학회논문지
    • /
    • 제25권10호
    • /
    • pp.1535-1545
    • /
    • 2022
  • Sign language has completely different meaning depending on the direction of the hand or the change of facial expression even with the same gesture. In this respect, it is crucial to capture the spatial-temporal structure information of each movement. However, sign language translation studies based on Sign2Gloss2Text only convey comprehensive spatial-temporal information about the entire sign language movement. Consequently, detailed information (facial expression, gestures, and etc.) of each movement that is important for sign language translation is not emphasized. Accordingly, in this paper, we propose Spatial-temporal Keypoints Centered Sign2Gloss2Text Translation, named STKC-Sign2 Gloss2Text, to supplement the sequential and semantic information of keypoints which are the core of recognizing and translating sign language. STKC-Sign2Gloss2Text consists of two steps, Spatial Keypoints Embedding, which extracts 121 major keypoints from each image, and Temporal Keypoints Embedding, which emphasizes sequential information using Bi-GRU for extracted keypoints of sign language. The proposed model outperformed all Bilingual Evaluation Understudy(BLEU) scores in Development(DEV) and Testing(TEST) than Sign2Gloss2Text as the baseline, and in particular, it proved the effectiveness of the proposed methodology by achieving 23.19, an improvement of 1.87 based on TEST BLEU-4.

Korean Text to Gloss: Self-Supervised Learning approach

  • Thanh-Vu Dang;Gwang-hyun Yu;Ji-yong Kim;Young-hwan Park;Chil-woo Lee;Jin-Young Kim
    • 스마트미디어저널
    • /
    • 제12권1호
    • /
    • pp.32-46
    • /
    • 2023
  • Natural Language Processing (NLP) has grown tremendously in recent years. Typically, bilingual, and multilingual translation models have been deployed widely in machine translation and gained vast attention from the research community. On the contrary, few studies have focused on translating between spoken and sign languages, especially non-English languages. Prior works on Sign Language Translation (SLT) have shown that a mid-level sign gloss representation enhances translation performance. Therefore, this study presents a new large-scale Korean sign language dataset, the Museum-Commentary Korean Sign Gloss (MCKSG) dataset, including 3828 pairs of Korean sentences and their corresponding sign glosses used in Museum-Commentary contexts. In addition, we propose a translation framework based on self-supervised learning, where the pretext task is a text-to-text from a Korean sentence to its back-translation versions, then the pre-trained network will be fine-tuned on the MCKSG dataset. Using self-supervised learning help to overcome the drawback of a shortage of sign language data. Through experimental results, our proposed model outperforms a baseline BERT model by 6.22%.

질문대답 아카이브에서 어휘 연관성을 이용한 질문 분류 (Question Classification Based on Word Association for Question and Answer Archives)

  • 김설영;이경순
    • 정보처리학회논문지B
    • /
    • 제17B권4호
    • /
    • pp.327-332
    • /
    • 2010
  • 보통 두 세 개의 어휘로 구성된 질문 분류에서 어휘의 다양한 표현으로 인한 어휘 불일치문제는 성능 저하의 주요 원인이다. 따라서 질문 분류에서 어휘 사이의 연관성을 반영하는 것이 필수적이다. 본 논문에서는 같은 범주의 질문-질문 쌍들에 대해 계산한 어휘 번역확률을 번역기반 언어모델에 반영하여 질문을 분류하는 방법을 제안한다. 실험에서 야후!앤써 질문대답 아카이브를 이용해서 전체 질문-대답 쌍들에 대해서 번역확률을 계산하는 것보다 같은 범주에 속하는 질문-질문 쌍들에 대해서 번역확률을 계산하는 것이 질문 분류에서 더 좋은 번역확률인 것을 증명한다.

전이학습 기반 기계번역 사후교정 모델 검증 (The Verification of the Transfer Learning-based Automatic Post Editing Model)

  • 문현석;박찬준;어수경;서재형;임희석
    • 한국융합학회논문지
    • /
    • 제12권10호
    • /
    • pp.27-35
    • /
    • 2021
  • 기계번역 사후교정 (Automatic Post Editing, APE)이란 번역 시스템을 통해 생성한 번역문을 교정하는 연구 분야로, 영어-독일어와 같이 학습데이터가 풍부한 언어쌍을 중심으로 연구가 진행되고 있다. 최근 APE 연구는 전이학습 기반 연구가 주로 이루어지는데, 일반적으로 self supervised learning을 통해 생성된 사전학습 언어모델 혹은 번역모델이 주로 활용된다. 기존 연구에서는 번역모델에 전이학습 시킨 APE모델이 뛰어난 성과를 보였으나, 대용량 언어쌍에 대해서만 이루어진 해당 연구를 저 자원 언어쌍에 곧바로 적용하기는 어렵다. 이에 본 연구에서는 언어 혹은 번역모델의 두 가지 전이학습 전략을 대표적인 저 자원 언어쌍인 한국어-영어 APE 연구에 적용하여 심층적인 모델 검증을 진행하였다. 실험결과 저 자원 언어쌍에서도 APE 학습 이전에 번역을 한차례 학습시키는 것이 유의미하게 APE 성능을 향상시킨다는 것을 확인할 수 있었다.

A Survey of Machine Translation and Parts of Speech Tagging for Indian Languages

  • Khedkar, Vijayshri;Shah, Pritesh
    • International Journal of Computer Science & Network Security
    • /
    • 제22권4호
    • /
    • pp.245-253
    • /
    • 2022
  • Commenced in 1954 by IBM, machine translation has expanded immensely, particularly in this period. Machine translation can be broken into seven main steps namely- token generation, analyzing morphology, lexeme, tagging Part of Speech, chunking, parsing, and disambiguation in words. Morphological analysis plays a major role when translating Indian languages to develop accurate parts of speech taggers and word sense. The paper presents various machine translation methods used by different researchers for Indian languages along with their performance and drawbacks. Further, the paper concentrates on parts of speech (POS) tagging in Marathi dialect using various methods such as rule-based tagging, unigram, bigram, and more. After careful study, it is concluded that for machine translation, parts of speech tagging is a major step. Also, for the Marathi language, the Hidden Markov Model gives the best results for parts of speech tagging with an accuracy of 93% which can be further improved according to the dataset.