• Title/Summary/Keyword: Transition-metal

Search Result 1,214, Processing Time 0.03 seconds

Magnetic Properties of Transition Metal Monolayers on Ta(001) Surfaces

  • Youn, S.J.;Hong, S.C.
    • Journal of Magnetics
    • /
    • v.13 no.4
    • /
    • pp.140-143
    • /
    • 2008
  • The magnetic and structural properties of transition metal (Mn, Fe, Co) monolayers on Ta(001) surfaces are investigated theoretically by using the first principles full-potential linearized augmented plane wave method. Mn and Fe monolayers become ferromagnetic on Ta(001) surfaces while Co monolayers becomes non-magnetic. The paramagnetism of Co monolayers is explained by the Stoner theory of magnetism. The magnetic coupling of a transition metal overlayer with a substrate is ascribed to the orbital hybridization between the s and d orbitals of the transition metal.

Spectral and Thermal Studies of Transition Metal PSSA Ionomers

  • Shim, Il-Wun;Risen, William M. Jr.
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.6
    • /
    • pp.368-376
    • /
    • 1988
  • Transition metal PSSA ionomers containing Co(II), Ni(II), Cr(III), Ru(III), and Rh(III) are investigated by IR, Far-IR, UV-Vis and DSC. Reliable IR Spectroscopic criteria are established for assessing the degree of ion-exchange of PSSA ionomers and the local structures around metal cations in them. In the hydrated transition metal PSSA ionomers, the ionic groups are solvated by water molecules and there is no significant interactions between sulfonate group and metal cations. The visible spectra indicated that metal cations are present as [M$(H_2O)_6$]$^{n+}$ with Oh symmetry. Their $T_g$ values increase as the extent of ionic site concentration increases, but there is no direct dependence of $T_g$ on the nature of metal cations or their oxidation states. Thus, the water content in PSSA ionomer is found to have dominant influence on $T_g$ of hydrated transition metal PSSA ionomers. Dehydration of the hydrated transition metal PSSA ionomers results in direct interaction between ionic groups and significant color changes of the ionomers due to the changes of the local structures around metal cations. On the base of spectral data, their local structures are discussed. In case of dehydrated 12.8 and 15.8 mol % transition metal PSSA ionomers, no glass transition is observed in 25-$250^{\circ}C$ region and this is believed to arise from the formation of highly crosslinked structures caused by direct coordination of sulfonate groups of metal cations. In the 6.9 mol % transition metal PSSA ionomers, the glass transition is always observed whether they are hydrated or dehydrated and this is though to be caused by the sufficient segmental mobility of the polymer backbone.

Metal-insulator Transition in Low Dimensional $La_{0.75}Sr_{0.25}VO_3$ Thin Films

  • Huynh, Sa Hoang;Dao, Tran M.;Mondal, Partha S.;Takamura, Y.;Arenholz, E.;Lee, Jai-Chan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.19.1-19.1
    • /
    • 2011
  • We report on the metal-insulator transition that occurs as a function of film thickness in ultrathin $La_{0.75}Sr_{0.25}VO_3$ films. The metal-insulator transition displays a critical thickness of 5 unit cell. Above the critical thickness, metallic films exhibit a temperature driven metal-insulator transition with weak localization behavior. With decreasing film thickness, oxygen octahedron rotation in the films increases, causing enhanced electron-electron correlation. The electron-electron correlations in ultrathin films induce the transition from metal to insulator in addition to Anderson localization.

  • PDF

Hydrogen Production from Ammonia Decomposition over Transition Metal Carbides (전이금속 카바이드를 이용한 암모니아 분해 반응으로부터 수소생산)

  • CHOI, EUI-JI;CHOI, JEONG-GIL
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • The preparation and catalytic activities of various transition metal carbide crystallites (VC, MoC, WC) were examined in this study. In particular, the effect of different kinds of transition metal crystallites were scrutinized on the ammonia decomposition reaction. The experimental results showed that BET surface areas ranged from $8.3m^2/g$ to $36.3m^2/g$ and oxygen uptake values varied from $9.1{\mu}mol/g$ to $25.4{\mu}mol/g$. Amongst prepared transition metal carbide crystallites, tungsten compounds (WC) were observed to be most active for ammonia decomposition reaction. The main reason for these results were considered to be related to the extent of electronegativity between these materials. Most of transition metal carbide crystallites were exceeded by Pt/C crystallite. However, the steady state reactivities for some of transition metal carbide crystallites (WC) were comparable to or even higher than that determined for the Pt/C crystallite.

Synthesis and electrochemical performance of transition metal-coated carbon nanofibers as anode materials for lithium secondary batteries

  • Choi, Jin-Yeong;Hyun, Yura;Park, Heai-Ku;Lee, Chang-Seop
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.161-167
    • /
    • 2018
  • In this study, transition metal coated carbon nanofibers (CNFs) were synthesized and applied as anode materials of Li secondary batteries. CNFs/Ni foam was immersed into 0.01 M transition metal solutions after growing CNFs on Ni foam via chemical vapor deposition (CVD) method. Transition metal coated CNFs/Ni foam was dried in an oven at $80^{\circ}C$. Morphologies, compositions, and crystal quality of CNFs-transition metal composites were characterized by scanning electron microscopy (SEM), Raman spectroscopy (Raman), and X-ray photoelectron spectroscopy (XPS), respectively. Electrochemical characteristics of CNFs-transition metal composites as anodes of Li secondary batteries were investigated using a three-electrode cell. Transition metal/CNFs/Ni foam was directly employed as a working electrode without any binder. Lithium foil was used as both counter and reference electrodes while 1 M $LiClO_4$ was employed as the electrolyte after it was dissolved in a mixture of propylene carbonate:ethylene carbonate (PC:EC) at 1:1 volume ratio. Galvanostatic charge/discharge cycling and cyclic voltammetry measurements were taken at room temperature using a battery tester. In particular, the capacity of the synthesized CNFs-Fe was improved compared to that of CNFs. After 30 cycles, the capacity of CNFs-Fe was increased by 78%. Among four transition metals of Fe, Cu, Co and Ni coated on carbon nanofibers, the retention rate of CNFs-Fe was the highest at 41%. The initial capacity of CNFs-Fe with 670 mAh/g was reduced to 275 mAh/g after 30 cycles.

Calculation of the Dipole Moments for Transition Metal Complexes

  • Golding, R. M.;Ahn, Sang-Woon
    • Bulletin of the Korean Chemical Society
    • /
    • v.2 no.2
    • /
    • pp.48-55
    • /
    • 1981
  • A new approach in calculating the dipole moments for transition metal complexes has been proposed and the calculated results are tabulated with the experimental values. The calculated dipole moments are applied to the theoretical prediction or confirmation of the geometric structure for the transition metal complexes.

The Preparation of Non-aqueous Supercapacitors with Lithium Transition-Metal Oxide/Activated Carbon Composite Positive Electrodes

  • Kim, Kyoung-Ho;Kim, Min-Soo;Yeu, Tae-Whan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3183-3189
    • /
    • 2010
  • In order to increase the specific capacitance and energy density of supercapacitors, non-aqueous supercapacitors were prepared using lithium transition-metal oxides and activated carbons as active materials. The electrochemical properties were analyzed in terms of the content of lithium transition-metal oxides. The results of cyclic voltammetry and AC-impedance analyses showed that the pseudocapacitance may stem from the synergistic contributions of capacitive and faradic effects; the former is due to the electric double layer which is prepared in the interface of activated carbon and organic electrolyte, and the latter is due to the intercalation of lithium ($Li^+$) ions. The specific capacitance and energy density of a supercapacitor improved as the lithium transition-metal oxides content increased, showing 60% increase compared to those of supercapacitor using a pure activated carbon positive electrode.

Transition Metal-Catalyzed Ortho-Functionalization in Organic Synthesis

  • Park, Young-Jun;Jun, Chul-ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.6
    • /
    • pp.871-877
    • /
    • 2005
  • Recent progress in the filed of transition-metal mediated C-H bond activation has had a great influence on organic synthesis. Among such transition-metal catalyzed reactions, ortho-functionalization via the chelationassisted strategy has been paid great attentions as one of the powerful methodologies for converting aromatic compounds into ones that are more functionalized at the exclusively ortho-position. In this context, various transition metal-catalyzed ortho-functionalizations such as alkylation, alkenylation, silylation and carbonylation are described briefly and their prospects are suggested.

Transition-metal oxalate-based electrodes for alkaline water electrolysis : a review (전이금속 옥살산염 기반 알칼라인 수전해 전극 응용기술 동향)

  • Ha, Jaeyun;Kim, Yong-Tae;Choi, Jinsub
    • Journal of Surface Science and Engineering
    • /
    • v.55 no.2
    • /
    • pp.38-50
    • /
    • 2022
  • As a low-cost and high-efficiency electrocatalysts with high performance and stability become a key challenge in the development of the practical use of water electrolysis, there is an intense interest in transition-metal oxalate-based materials. Transition-metal oxalate-based catalysts with excellent electrochemical performances have been widely applied in water electrolysis due to its low-cost and ease of synthesis. This review provides a useful summary on the development of transition-metal oxalate as potential catalysts for water electrolysis with a focus on the structural and compositional alteration, role of oxalate anion, and enhanced electrochemical performances.