DOI QR코드

DOI QR Code

Transition Metal-Catalyzed Ortho-Functionalization in Organic Synthesis

  • Park, Young-Jun (Center for Bioactive Molecular Hybrid (CBMH), Department of Chemistry, Yonsei University) ;
  • Jun, Chul-ho (Center for Bioactive Molecular Hybrid (CBMH), Department of Chemistry, Yonsei University)
  • Published : 2005.06.20

Abstract

Recent progress in the filed of transition-metal mediated C-H bond activation has had a great influence on organic synthesis. Among such transition-metal catalyzed reactions, ortho-functionalization via the chelationassisted strategy has been paid great attentions as one of the powerful methodologies for converting aromatic compounds into ones that are more functionalized at the exclusively ortho-position. In this context, various transition metal-catalyzed ortho-functionalizations such as alkylation, alkenylation, silylation and carbonylation are described briefly and their prospects are suggested.

Keywords

References

  1. Kakiuchi, F.; Chatani, N. Adv. Synth. Catal. 2003, 345, 1077 https://doi.org/10.1002/adsc.200303094
  2. Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102, 1731 https://doi.org/10.1021/cr0104330
  3. Dyker, G. Angew. Chem. Int. Ed. 1999, 38, 1698 https://doi.org/10.1002/(SICI)1521-3773(19990614)38:12<1698::AID-ANIE1698>3.0.CO;2-6
  4. Jun, C.-H.; Lee, J. H. Pure Appl. Chem. 2004, 76, 577 https://doi.org/10.1351/pac200476030577
  5. Murai, S.; Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.; Sonoda, M.; Chatani, N. Nature 1993, 366, 529 https://doi.org/10.1038/366529a0
  6. Freidel, C.; Crafts, J. M. Bull. Soc. Chim. Fr. 1877, 27, 530
  7. Kerr, J. A. In CRC Handbook of Chemistry and Physics, 71st ed.; Lide, D. R. Ed.; CRC: Boston, 1990; pp 9-95
  8. Bishop III, K. C. Chem. Rev. 1976, 76, 461 and references therein https://doi.org/10.1021/cr60302a003
  9. Lewis, L. N.; Smith, J. F. J. Am. Chem. Soc. 1986, 108, 2728 https://doi.org/10.1021/ja00270a036
  10. Kakiuchi, F.; Sonoda, M.; Tsujimoto, T.; Chatani, N.; Murai, S. Chem. Lett. 1999, 19
  11. Uchimaru, Y. Chem. Commun. 1999, 1133
  12. Lenges, C. P.; Brookhart, M. J. Am. Chem. Soc. 1999, 121, 6616 https://doi.org/10.1021/ja990702s
  13. Jun, C.-H.; Hong, J.-B.; Kim, Y.-H.; Chung, K.-W. Angew. Chem. Int. Ed. 2000, 39, 3440 https://doi.org/10.1002/1521-3773(20001002)39:19<3440::AID-ANIE3440>3.0.CO;2-1
  14. Jun, C.-H.; Moon, C. W.; Hong, J.-B.; Lim, S.-G.; Chung, K.-Y.; Kim, Y.-H. Chem. Eur. J. 2002, 8, 485 https://doi.org/10.1002/1521-3765(20020118)8:2<485::AID-CHEM485>3.0.CO;2-1
  15. Ahrendt, K. A.; Bergman, R. G.; Ellman, J. A. Org. Lett. 2003, 5, 1301 https://doi.org/10.1021/ol034228d
  16. Thalji, R. K.; Ellman, J. A.; Bergman, R. G. J. Am. Chem. Soc. 2004, 126, 7192 https://doi.org/10.1021/ja0394986
  17. Jun, C.-H.; Moon, C. W.; Kim, Y.-M.; Lee, H.; Lee, J. H. Tetrahedron Lett. 2002, 43, 4233 https://doi.org/10.1016/S0040-4039(02)00769-4
  18. Lim, S.-G.; Ahn, J.-A.; Jun, C.-H. Org. Lett. 2004, 6, 4687 https://doi.org/10.1021/ol048095n
  19. Miura, M.; Tsuda, T.; Satoh, T.; Pivsa-Art, S.; Nomura, M. J. Org. Chem. 1998, 63, 5211 https://doi.org/10.1021/jo980584b
  20. Boele, M. D. K.; van Strijdonck, G. P. F.; de Vries, A. H. M.; Kamer, P. C. J.; de Vries, J. G.; van Leeuwen, P. W. N. M. J. Am. Chem. Soc. 2002, 124, 1586 https://doi.org/10.1021/ja0176907
  21. Kakiuchi, F.; Yamamoto, Y.; Chatani, N.; Murai, S. Chem. Lett. 1995, 681
  22. Lim, S.-G.; Lee, J. H.; Moon, C. W.; Hong, J.-B.; Jun, C.-H. Org. Lett. 2003, 5, 2759 https://doi.org/10.1021/ol035083d
  23. Kametani, Y.; Satoh, T.; Miura, M.; Nomura, M. Tetrahedron Lett. 2000, 41, 2655 https://doi.org/10.1016/S0040-4039(00)00238-0
  24. Bedford, R. B.; Coles, S. J.; Hursthouse, M. B.; Limmert, M. E. Angew. Chem. Int. Ed. 2003, 42, 112 https://doi.org/10.1002/anie.200390037
  25. Kakiuchi, F.; Kan, S.; Igi, K.; Chatani, N.; Murai, S. J. Am. Chem. Soc. 2003, 125, 1698 https://doi.org/10.1021/ja029273f
  26. Park, Y. J.; Jo, E.-A.; Jun, C.-H. Chem. Commun. 2005, 1185
  27. Kakiuchi, F.; Igi, K.; Matsumoto, M.; Chatani, N.; Murai, S. Chem. Lett. 2001, 422
  28. Kakiuchi, F.; Igi, K.; Matsumoto, M.; Hayamizu, T.; Chatani, N.; Murai, S. Chem. Lett. 2002, 396
  29. Kakiuchi, F.; Matsumoto, M.; Sonoda, M.; Fukuyama, T.; Chatani, N.; Murai, S.; Furukawa, N.; Seki, Y. Chem. Lett. 2000, 750
  30. Moore, E. J.; Pretzer, W. R.; O'Connell, T. J.; Harris, J.; LaBounty, L.; Chou, L.; Grimmer, S. S. J. Am. Chem. Soc. 1992, 114, 5888 https://doi.org/10.1021/ja00040a078
  31. Moore, E. J.; Pretzer, W. R. US Patent 5,081,250, 1992
  32. Fukuyama, T.; Chatani, N.; Kakiuchi, F.; Murai, S. J. Org. Chem. 1997, 62, 5647 https://doi.org/10.1021/jo970697f

Cited by

  1. Room-Temperature Regioselective C−H/Olefin Coupling of Aromatic Ketones Using an Activated Ruthenium Catalyst with a Carbonyl Ligand and Structural Elucidation of Key Intermediates vol.132, pp.50, 2010, https://doi.org/10.1021/ja104918f
  2. Post-grafting of silica surfaces with pre-functionalized organosilanes: new synthetic equivalents of conventional trialkoxysilanes vol.47, pp.17, 2011, https://doi.org/10.1039/c1cc00038a
  3. Ru(II)-Catalyzed Amidation of 2-Arylpyridines with Isocyanates via C–H Activation vol.14, pp.16, 2012, https://doi.org/10.1021/ol302000a
  4. Transition Metal Ions as Efficient Catalysts for Facile Ortho-Formylation of Phenols under Vilsmeier–Haack Conditions vol.2012, pp.2090-2018, 2012, https://doi.org/10.1155/2012/289023
  5. Ruthenium-catalyzed ortho-C–H bond alkylation of aromatic amides with α,β-unsaturated ketones via bidentate-chelation assistance vol.4, pp.5, 2013, https://doi.org/10.1039/c3sc50310k
  6. Branch-Selective, Iridium-Catalyzed Hydroarylation of Monosubstituted Alkenes via a Cooperative Destabilization Strategy vol.136, pp.29, 2014, https://doi.org/10.1021/ja505776m
  7. Rhodium-Catalyzed Alkylation of C–H Bonds in Aromatic Amides with α,β-Unsaturated Esters vol.16, pp.19, 2014, https://doi.org/10.1021/ol502500c
  8. C–C and C–N Coupling between 2-Alkylazaarenes and Propargylic Alcohols vol.16, pp.2, 2014, https://doi.org/10.1021/ol4034513
  9. Ruthenium-Catalyzed Ortho-Selective C–H Alkenylation of Aromatic Compounds with Alkenyl Esters and Ethers vol.33, pp.1, 2014, https://doi.org/10.1021/om401204h
  10. CH Functionalization of Tertiary Amines for Alkylation Reaction vol.356, pp.13, 2014, https://doi.org/10.1002/adsc.201400107
  11. -Quinolyl Benzamides: Evidence for Stereoretentive Coupling of Secondary Alkyl Iodides vol.137, pp.1, 2015, https://doi.org/10.1021/ja511557h
  12. Mechanistic Insight into Ketone α-Alkylation with Unactivated Olefins via C–H Activation Promoted by Metal–Organic Cooperative Catalysis (MOCC): Enriching the MOCC Chemistry vol.137, pp.19, 2015, https://doi.org/10.1021/jacs.5b01502
  13. )–H acetoxylation of amides through an unusual cyclopalladation mechanism vol.51, pp.15, 2015, https://doi.org/10.1039/C4CC09576F
  14. Overcoming naphthoquinone deactivation: rhodium-catalyzed C-5 selective C–H iodination as a gateway to functionalized derivatives vol.7, pp.6, 2016, https://doi.org/10.1039/C6SC00302H
  15. Metal–Organic Cooperative Catalysis in C–H and C–C Bond Activation vol.117, pp.13, 2017, https://doi.org/10.1021/acs.chemrev.6b00554
  16. A deciduous directing group approach for the addition of aryl and vinyl nucleophiles to maleimides vol.53, pp.46, 2017, https://doi.org/10.1039/C7CC02392H
  17. Rh-Catalyzed CC Cleavage of Benzyl/Allylic Alcohols to Produce Benzyl/Allylic Amines or other Alcohols by Nucleophilic Addition of Intermediate Rhodacycles to Aldehydes and Imines vol.18, pp.50, 2012, https://doi.org/10.1002/chem.201201867
  18. Ruthenium-catalyzed Ortho-selective Aromatic C–H Alkenylation with Alkenyl Carbonates vol.43, pp.5, 2014, https://doi.org/10.1246/cl.140006
  19. Hydroarylations of Heterobicyclic Alkenes through Rhodium-Catalyzed Directed CH Functionalizations of S-Aryl Sulfoximines vol.20, pp.48, 2014, https://doi.org/10.1002/chem.201404859
  20. Branch Selective Murai-type Alkene Hydroarylation Reactions vol.45, pp.1, 2016, https://doi.org/10.1246/cl.150913
  21. -Hydroxylation under Phosphine Free Neutral Condition pp.16154150, 2019, https://doi.org/10.1002/adsc.201801340
  22. Intermolecular Hydroacylation by Transition-Metal Complexes vol.2007, pp.12, 2007, https://doi.org/10.1002/ejoc.200600846
  23. Transition Metal Catalyzed ortho-Functionalization in Organic Synthesis vol.36, pp.40, 2005, https://doi.org/10.1002/chin.200540261
  24. Solvent-free Microwave-Assisted Ortho-Alkylation of Aromatic Ketimine with Acrylic Acid Derivatives by Rh(I) Catalyst vol.28, pp.11, 2007, https://doi.org/10.5012/bkcs.2007.28.11.2020
  25. Direct Prenylation of Aromatic and α,β-Unsaturated Carboxamides via Iridium-Catalyzed C−H Oxidative Addition−Allene Insertion vol.11, pp.18, 2005, https://doi.org/10.1021/ol901759t
  26. Rhodium-Catalyzed C−C Bond Formation via Heteroatom-Directed C−H Bond Activation vol.110, pp.2, 2005, https://doi.org/10.1021/cr900005n
  27. Tertiary Carbinamine Synthesis by Rhodium-Catalyzed [3+2] Annulation of N-Unsubstituted Aromatic Ketimines and Alkynes vol.16, pp.8, 2005, https://doi.org/10.1002/chem.200902814
  28. Palladium-catalyzed oxidative alkynylation of arene C-H bond using the chelation-assisted strategy vol.68, pp.26, 2005, https://doi.org/10.1016/j.tet.2012.04.003
  29. Katalytische Funktionalisierung von C(sp2)‐H‐ und C(sp3)‐H‐Bindungen unter Verwendung von zweizähnigen dirigierenden Gruppen vol.125, pp.45, 2005, https://doi.org/10.1002/ange.201301451
  30. Copper‐Catalyzed Intramolecular Oxidative CH Functionalization and CN Formation of 2‐Aminobenzophenones: Unusual Pseudo‐1,2‐Shift of the Substituent on the Aryl vol.19, pp.2, 2005, https://doi.org/10.1002/chem.201203859
  31. Catalytic Functionalization of C(sp2)H and C(sp3)H Bonds by Using Bidentate Directing Groups vol.52, pp.45, 2005, https://doi.org/10.1002/anie.201301451
  32. Readily Removable Directing Group Assisted Chemo‐ and Regioselective C(sp3)H Activation by Palladium Catalysis vol.127, pp.46, 2005, https://doi.org/10.1002/ange.201505932
  33. Readily Removable Directing Group Assisted Chemo‐ and Regioselective C(sp3)H Activation by Palladium Catalysis vol.54, pp.46, 2005, https://doi.org/10.1002/anie.201505932
  34. Branch‐Selective Alkene Hydroarylation by Cooperative Destabilization: Iridium‐Catalyzed ortho‐Alkylation of Acetanilides vol.127, pp.49, 2005, https://doi.org/10.1002/ange.201506581
  35. Branch-Selective Alkene Hydroarylation by Cooperative Destabilization: Iridium-Catalyzed ortho -Alkylation of Acetanilides vol.54, pp.49, 2015, https://doi.org/10.1002/anie.201506581