• Title/Summary/Keyword: Transition model

Search Result 1,773, Processing Time 0.026 seconds

A Mechanistic Model for Forced Convective Transition Boiling of Subcooled Water in Vertical Tubes (수직관내 미포화수의 강제대류 천이비등에 대한 역학적 모델)

  • Lee, Kwang-Won;Baik, Se-Jun;Han, Sang-Good;Joo, Kyung-Oin;Yang, Jae-Young
    • Nuclear Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.503-517
    • /
    • 1995
  • A mechanistic model for forced convective transition boiling has been developed to predict transition boiling heat flux realistically. This model is based on a postulated multi­stage boiling process occurring during the passage time of an elongated vapor blanket specified at a critical heat flux condition. Between the departure from nucleate boiling (DNB) and the departure from film boiling (DFB) points, the boiling heat transfer is established through three boiling stages, namely, the macrolayer evaporation and dryout governed by nucleate boiling in a thin liquid film and the unstable film boiling. The total heat transfer rate during the transition boiling is the sum of the heat transfer rates after the DNB weighted by the time fractions of each stage, which are defined as the ratio of each stage duration to the vapor blanket passage time. The model predictions are compared with some available experimental transition boiling data. From these comparisons, it can be seen that the transition boiling heat fluxes including the maximum heat flux and the minimum film boiling heat flux are nil predicted at low qualities/high pressures near 10 bar.

  • PDF

Implementation of Q-Tensor Model into 3-D Finite Element Method (FEM) Numerical Solver

  • Shin, Woo-Jung;Yoon, Hyung-Jin;Won, Tae-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.509-512
    • /
    • 2007
  • In this paper, we report our successful implementation of Q tensor model in threedimensional finite element method (FEM) simulator. The 3D-FEM Q tensor-model-based simulation revealed that the spaly-to-bend transition occurs only at 4 V while the vector-model based FEM solver provides an erroneous transition voltage of 8 V.

  • PDF

Molecular Spinless Energies of the Modified Rosen-Morse Potential Energy Model

  • Jia, Chun-Sheng;Peng, Xiao-Long;He, Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2699-2703
    • /
    • 2014
  • We solve the Klein-Gordon equation with the modified Rosen-Morse potential energy model. The bound state energy equation has been obtained by using the supersymmetric shape invariance approach. The relativistic vibrational transition frequencies for the $6^1{\Pi}_u$ state of the $^7Li_2$ molecule have been computed by using the modified Rosen-Morse potential model. The calculated relativistic vibrational transition frequencies are in good agreement with the experimental RKR values.

The Study of Turbulence Model of Low-Reynolds Number Flow (저 레이놀즈수 유동장에서의 난류모델에 관한 연구)

  • Yoo C.;Lee J. S.;Kim C.;Rho O. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.172-177
    • /
    • 2004
  • In the present work, we have interests on the modification of parallel implemented with MPI(Message Passing Interface) programming method, 3-Dimensional, unsteady, incompressible Navier-Stokes equation solver to analyze the low-Reynolds number flow In order to accurate calculation aerodynamic coefficients in low-Reynolds number flow field, we modified the two-equation turbulence model. This paper describes the development and validation of a new two-equation model for the prediction of flow transition. It is based on Mentor's low Reynolds $\kappa-\omega$ model with modifications to include Total Stresses Limitation (TSL) and Separation Transition Trigger (STT)

  • PDF

Three-Dimensional Numerical Simulation on a Circular-to-Rectangular Transition Duct (Circular-to-Rectangular Transition Duct 에서의 3차원 유동장에 관한 연구)

  • Cho Soo-Yong;Son Ho-Jae
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.55-61
    • /
    • 1998
  • The purpose of this study is to compare the predictive behaviors of the extended $k-{\varepsilon}$ turbulence model and the standard $k-{\varepsilon}$ turbulence model. Grid dependency is tested with the H-type grid and the O-type grid. Computations have been performed for a circular-to-rectangular transition duct. Numerical results for several sections along the streamwise have been obtained to compare with experimental results. The Reynolds number is 390,000 based on the bulk velocity at the inlet. The computed axial velocity contours, transverse velocity profiles, static pressure contours, peripheral skin friction coefficient, and peripheral wall static pressure distributions have been compared with experimental results. The computed results obtained with the extended $k-{\varepsilon}$ turbulence model show better agreement with experimental results than those obtained with the standard $k-{\varepsilon}$ turbulence model. Comparing to the computed results obtained with the H-type grid and O-type grid, those with H-type grid agree well with experimental results.

  • PDF

Calculation of Rotor-Stator Interactions Using a Low Reynolds Number Turbulence Model (저레이놀즈수 난류모델을 사용한 정익-동익 상호작용 해석)

  • Choi, Chang Ho;Yoo, Jung Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1229-1239
    • /
    • 1999
  • A computational study on unsteady compressible flows has been performed by adopting a low Reynolds number $k-{\omega}$ turbulence model in conjunction with dual time stepping scheme. An explicit four-stage Runge-Kutta scheme for the Navier-Stokes equations and an approximate factorization scheme for the $k-{\omega}$ turbulence model equations are used. Computational results obtained for blade surface pressure distributions in the process of rotor-stator interaction in a turbine stage are in good agreement with extant experimental data. The effects of the wake from the stator on the boundary-layer transition over the rotor blade surface are discussed by showing that high intensity turbulence of the stator wake induces an early transition.

A study of predicting irradiation-induced transition temperature shift for RPV steels with XGBoost modeling

  • Xu, Chaoliang;Liu, Xiangbing;Wang, Hongke;Li, Yuanfei;Jia, Wenqing;Qian, Wangjie;Quan, Qiwei;Zhang, Huajian;Xue, Fei
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2610-2615
    • /
    • 2021
  • The prediction of irradiation-induced transition temperature shift for RPV steels is an important method for long term operation of nuclear power plant. Based on the irradiation embrittlement data, an irradiation-induced transition temperature shift prediction model is developed with machine learning method XGBoost. Then the residual, standard deviation and predicted value vs. measured value analysis are conducted to analyze the accuracy of this model. At last, Cu content threshold and saturation values analysis, temperature dependence, Ni/Cu dependence and flux effect are given to verify the reliability. Those results show that the prediction model developed with XGBoost has high accuracy for predicting the irradiation embrittlement trend of RPV steel. The prediction results are consistent with the current understanding of RPV embrittlement mechanism.

Tourist Transition Model among Tourist Attractions based on GPS Trajectory

  • Kasahara, Hidekazu;Watabe, Takeshi;Iiyama, Masaaki
    • Journal of Smart Tourism
    • /
    • v.1 no.2
    • /
    • pp.19-25
    • /
    • 2021
  • Before COVID-19, tourist destinations have experienced problems with congestion of both famous tourist attractions and public transportation. Over-tourism is not an issue at this time, but it is likely to rekindle after the COVID-19 pandemic ends. One method of mitigating over-tourism is to estimate tourist behavior using a tourist transition model and consequently adjust public transportation operations. In this study, we propose a construction method for a model of tourist transitions among tourist attractions based on tourist GPS trajectory data. We construct tourist transition models using actual trajectory data for tourists staying in the vicinity of Kyoto City. The results verify the model performance.

Numerical simulation of a toroidal single-phase natural circulation loop with a k-kL-ω transitional turbulence model

  • Yiwa Geng;Xiongbin Liu;Xiaotian Li;Yajun Zhang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.233-240
    • /
    • 2024
  • The wall friction correlations of oscillatory natural circulation loops are highly loop-specific, making it difficult to perform 1-D system simulations before obtaining specific experimental data. To better predict the friction characteristics, the nonlinear dynamics of a toroidal single-phase natural circulation loop were numerically investigated, and the transition effect was considered. The k-kL-ω transitional turbulence and k-ω SST turbulence models were used to compute the flow characteristics of the loop under different heating powers varying from 0.48 to 1.0 W/cm2, and the results of both models were compared with previous experiments. The mass flow rates and friction factors predicted by the k-kL-ω model showed a better agreement with the experimental data than the results of the k-ω SST model. The oscillation frequencies calculated using both models agreed well with the experimental data. The k-kL-ω transitional turbulence model provided better friction-factor predictions in oscillatory natural circulation loops because it can reproduce the temporal and spatial variation of the wall shear stress more accurately by capturing the movement of laminar, transition turbulent zones inside unstable natural circulation loops. This study shows that transition effects are a possible explanation for the highly loop-specific friction correlations observed in various oscillatory natural circulation loops.

Application of Fuzzy Transition Timed Petri Net for Discrete Event Dynamic Systems (퍼지 트랜지션 시간 페트리 네트의 이산 사건 시스템에 응용)

  • 모영승;김진권;김정철;탁상아;황형수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.364-364
    • /
    • 2000
  • Timed Petri Net(TPN) is one of methods to model and to analyze Discrete Event Dynamic Systems(DEDSs) with real time values. It has two time values, earliest firing time ($\alpha$$_{i}$) and latest firing time ($\beta$$_{I}$) for the each transition. A transition of TPN is fired at arbitrary time of time interval ($\alpha$$_{I}$, $\beta$$_{i}$). Uncertainty of firing time gives difficulty to analyze and estimate a modeled system. In this paper, we proposed the Fuzzy Transition Timed Petri Net(FTTPN) with fuzzy theory to determine the optimal transition time (${\gamma}$$_{i}$). The transition firing time (${\gamma}$$_{i}$) of FTTPN is determined from fuzzy controller which is modeled with information of state transition. Each of the traffic signal controllers are modeled using the proposed method and timed petri net. And its Performance is evaluated by simulation of traffic signal controller. controller.

  • PDF