• Title/Summary/Keyword: Transient model analysis

Search Result 972, Processing Time 0.029 seconds

A Study on Dynamic Characteristics of a Weight-Reduced Bogie Frame (경량화된 대차프레임의 동적특성에 관한 연구)

  • 최경호;박정호;안찬우;김현수;조우석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.823-826
    • /
    • 2001
  • A shape optimization of a rib of a bolster of a bogie frame is attempted and a dimension optimization on upper and lower plates is also carried out for the reduction of the weight of bogie frame. In addition, the dynamic characteristics of the weight reduced model are investigated by an analysis of a natural frequency and a transient analysis. The results show that the first natural frequency of an optimized model is larger than that of the lowest design value. And the results of transit analysis based on the experimental stress also show smaller value than the yield stress. Thus the optimized model attempted in this study is considered to be structurally stable and useful for the improvement of railway carriages.

  • PDF

Analysis of Transient Characteristics in Superconducting AC Generator Using the Compensated 2-D Model (보정된 2차원 모델에 의한 초전도 교류 발전기의 과도특성 해석)

  • Lee, Hyung-Woo;Chun, Yon-Do;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.103-105
    • /
    • 1998
  • This paper presents the compensated 2-D magnetic fields analysis of superconducting AC generator(SCG) by using efficient 2-D model. 3-D analysis is necessary for the accurate analysis because SCG has a large leakage flux owing to the air cored winding and end ring structure. However, in 3-D FEM, considering the movement of rotor is difficult, so efficient 2-D model which can compensate the leakage flux has been proposed and the movement of rotor is easily considered. The characteristics in transient state of SCG and the prime role of damper also have been evaluated.

  • PDF

Modeling and Analysis of the KEPCO UPFC System by EMTDC/PSCAD

  • Yoon, Jong-Su;Kim, Soo-Yeol;Chang, Byung-Hoon;Lim, Seong-Joo;Choo, Jin-Boo
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.3
    • /
    • pp.148-154
    • /
    • 2003
  • This paper describes the development of KEPCO's 80MVA UPFC electromagnetic transient model and the analysis of its performance in the actual Korean power system. KEPCO's 80MVA UPFC is currently undergoing installation and will be ready for commercial operation from the year 2003. In order to apply a new FACTS device such as the UPFC to the actual power system, the utility needs, in advance, both load flow stability studies and transient studies. Therefore, KEPRI, the research institute of KEPCO, developed a detailed transient analysis model that is based on the actual UPFC S/W algorithm and H/W specifications. This simulation model is implemented by an EMTDC/PSCAD package. The results of the simulation show the effectiveness of UPFC operation in the KEPCO power system.

A Study on Transient Analysis of Linear Induction Motor with Ununiform Airgap for Shallow-depth Underground Train (저심도철도용 선형유도전동기의 공극 불균일 과도특성 분석 연구)

  • Lee, Hyung-Woo;Park, Chan-Bae;Won, Sunghong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.723-729
    • /
    • 2013
  • This paper presents an parallel type Linear Induction Motor with ununiform airgap for a shallow-depth underground train with 100‰ grade and 15 m curvature. This parallel type LIM has enough gradability but has inherently ununiform airgap between center and end parts. Consequently, performance when the train passes curved section should be considered with transient analysis. Moreover, general parallel operation, 1C2M which is usually used for train operation, deteriorates LIM performance because of different line velocity between inner and outer LIMs. Transient analysis has many problems such as huge model, lots of meshes, very long calculation time, truncation error and so on. This paper has presented a novel technique using equivalent linear rotating model in order to solve these problems and has analyzed parallel type LIM by using the proposed technique. Finally, LIM performance according to independent operating control has been investigated.

A Transient Model Analysis of a Fluorescent Lamp at Startup Time (형광램프의 기동시 과도특성 모델 해석)

  • 함중걸;백수현
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.10 no.5
    • /
    • pp.52-56
    • /
    • 1996
  • Fluorescent lamps are widely accepted to energy efficient commercial lighting applications. In designing a fluorescent lamp system, a ballast design heavily relies on the characteristic of a fluorescent lamp under consideration. Especially, at startup time, the transient characteristic of a fluorescent lamp puts much tighter specification of a design. In this paper, based on the transient characteristic at the startup time, a transient behavioral model of a fluorescent lamp is presented with an equivalent circuit. The model is applicable to the wide range of fluorescent lamps provided by different manufacturers. The experimental results are compared with the results provided by PSPICE simulation. The result shows the model is effective In practice. As a result, we could identify more accurate startup constraints to decide the design of either an electro mechanical or an electronic ballast.

  • PDF

A Study on the Optimization of a Spacecraft Structure by Using Coupled Load Analysis Model and Modal Transient Analysis (연성하중해석 모델과 모달과도해석을 이용한 위성체 구조부재의 최적화 연구)

  • Hwang, Do-Soon;Lee, Young-Shin;Kim, In-Gul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.34-48
    • /
    • 2004
  • In this paper an optimization algorithm is suggested to reduce the huge computation time in the optimum design of large structures, especially in spacecraft structures. It combines the coupled load analysis model using a constrained mode of component mode synthesis and the modal transient analysis. The computer simulation code is developed and evaluated in optimizing spacecraft platforms. The developed algorithm can alleviate the computational load with adequate accuracy. From the optimization of a spacecraft structural member, the characteristics of each structural member can be understood.

MNSR transient analysis using the RELAP5/Mod3.2 code

  • Dawahra, S.;Khattab, K.;Alhabit, F.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1990-1997
    • /
    • 2020
  • To support the safe operation of the Miniature Neutron Source Reactor (MNSR), a thermo-hydraulic transient model using the RELAP5/Mod3.2 code was simulated. The model was verified by comparing the results with the measured and the previously calculated data. The comparisons consisted of comparing the MNSR parameters under normal constant power operation and reactivity insertion transients. Reactivity Insertion Accident (RIA) for three different initial reactivity values of 3.6, 6.0, and 6.53 mk have been simulated. The calculated peaks of the reactor power, fuel, clad and coolant temperatures in hot channel were calculated in this model. The reactor power peaks were: 103 kW at 240 s, 174 kW at 160 s and 195 kW at 140 s, respectively. The fuel temperature reached its maximum value of 116 ℃ at 240 s, 124 ℃ at 160 s and 126 ℃ at 140 s respectively. These calculation results ensured the high inherently safety features of the MNSR under all phases of the RIAs.

Evaluating Stability of a Transient Cut during Endmilling using the Dynamic Cutting Force Model

  • Seokjae Kang;Cho, Dong-Woo;Chong K. Chun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.2
    • /
    • pp.67-75
    • /
    • 2000
  • virtual computer numerical control(VCNC) arises from the concept that one can experience pseudo-real machining with a computer-numerically-controlled(CNC) machine before actually cutting an object. To achieve accurate VCNC, it is important to determine abnormal behavior, such as chatter, before cutting. Detecting chatter requires an understanding of the dynamic cutting force model. In general, the cutting process is a closed loop system the consists of structural and cutting dynamic. Machining instability, namely chatter, results from the interaction between these two dynamics. Several previous reports have predicted stability for a single path, using a simple cutting force model without run out and penetration effects. This study considers both tool run out and penetration effects, using experimental modal analysis, to obtain predictions that are more accurate. The machining stability during a corner cut, which is a typical transient cut, was assessed from an evaluation of the cutting configurations at the corner.

  • PDF

A Transient Modeling of Temperature Variation in a Melting Furnace of a Pyrolysis Melting Incinerator (열분해 용융소각로 내 용융로에서의 온도변화에 대한 과정론적 모델링)

  • Kim, Bong-Keun;Yang, Won;Yu, Tae-U
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.167-171
    • /
    • 2006
  • The previous models for thermal behavior in the melting furnace were deterministic, composed of such a form that if the initial input conditions are determined, the results would have been come out by using the basic heat equilibrium equations. But making the experiment by trusting the analysis results, the melted slag is fortuitously set often, because temperature variation of the melted slag in the reaction process is not point function but path function. So in this study, a transient model was developed and verified by comparing with the experimental results.

  • PDF

HYDRODYNAMIC SOLVER FOR A TRANSIENT, TWO-FLUID, THREE-FIELD MODEL ON UNSTRUCTURED GRIDS (비정렬격자계에서 과도 이상유동해석을 위한 수치해법)

  • Jeong, J.J.;Yoon, H.Y.;Kim, J.;Park, I.K.;Cho, H.K.
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.44-53
    • /
    • 2007
  • A three-dimensional (3D) unstructured hydrodynamic solver for transient two-phase flows has been developed for a 3D component of a nuclear system code and a component-scale analysis tool. A two-fluid three-field model is used for the two-phase flows. The three fields represent a continuous liquid, an entrained liquid, and a vapour field. An unstructured grid is adopted for realistic simulations of the flows in a complicated geometry. The semi-implicit ICE (Implicit Continuous-fluid Eulerian) numerical scheme has been applied to the unstructured non-staggered grid. This paper presents the numerical method and the preliminary results of the calculations. The results show that the modified numerical scheme is robust and predicts the phase change and the flow transitions due to boiling and flashing very well.