• Title/Summary/Keyword: Transient Technique

Search Result 725, Processing Time 0.026 seconds

Optimal Design of the Induction Heating Coil using Transient Design Sensitivity Analysis (과도상태 설계민감도를 이용한 유도가열코일의 최적설계)

  • Kwak, In-Gu;Byun, Jin-Kyu;Choi, Kyung;Hahn, Song-Yop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.5
    • /
    • pp.327-337
    • /
    • 2000
  • In this paper, the design sensitivity formula for the control of the transient temperature distribution is developed using the direct differentiation method, and used for the optimal design of induction heating coil position. The temperature distribution is calculated using the heat source of the induced eddy current and heat diffusion equation. The physical property variations of the workpiece depending on the temperature are considered. The eddy current distribution and the temperature distribution are calculated with the 2D finite element procedure. The adjoint variable technique is employed in expressing the design sensitivity. The goal of the design is to have the desired distribution of the temperature on a specific region of the sensitivity. The goal of the design is to have the desired distribution of the temperature on a specific region sensitivity. The goal of the design is to have the desired distribution of the temperature on a specific region of the workpiece. The numerical example shows that the proposed design sensitivity analysis for the control of the transient temperature distribution is very useful and practical in the optimal design of induction heating coils.

  • PDF

Analysis on the Switching Surge characteristic of Cable Pulling of High-Voltage Induction Motor Fed by Inverter (인버터 구동 고압 유도전동기의 케이블 포설시 스위칭 써지 특성 분석)

  • Kwon, Young-Mok;Kim, Jae-Chul;Song, Seung-Yeop;Shin, Joong-Eun
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.63-65
    • /
    • 2004
  • The recent advancement in the power electronic technique has increased the use of induction motor fed by inverter using high-frequency switching devices. Also the tendency is toward larger size and higher voltage. Therefore, The IGBT (Insulated-Gate Bipolar Transistor) that is high switching frequency element has been using increase. But, The switching surge voltage was occurred by high switching frequency of inverter has appeared a voltage doubling in the motor input terminal due to mismatching of cable characteristic impedance and motor characteristic impedance. Actually, The Switching surge voltage became the major cause to occur the insulation failure by serious voltage stress in the stator winding of induction motor. The short during rise time of switching surge and cable length is increased, the maximum transient voltage seen at the motor terminals increases. In this paper, Analyzed switching surge transient voltage of power cable pulling is used EMTP(Electromagnetic Transient Program) at the induction motor terminal and in cable.

  • PDF

Transient response analysis by model order reduction of a Mokpo-Jeju submerged floating tunnel under seismic excitations

  • Han, Jeong Sam;Won, Boreum;Park, Woo-Sun;Ko, Jin Hwan
    • Structural Engineering and Mechanics
    • /
    • v.57 no.5
    • /
    • pp.921-936
    • /
    • 2016
  • In this study, a model order reduction technique is applied to solve the transient responses of submerged floating tunnel (SFT) from Mokpo to Jeju under seismic excitations. Because the SFT is a very long structure as well as a transient response analysis requires large amount of computational resources, the model order reduction is mandatory in the design stage of the SFT. Thus, we apply a model order reduction based on Krylov subspace to the simplified finite element model of the SFT. The responses of the reduced order model are compared with those of the full order model and also are verified by referring a previous work. In conclusion, the computational resources are dramatically reduced with an acceptable accuracy by using the model order reduction, which eventually is useful for designing the full-scale model of SFTs.

INVERSE HEAT CONDUCTION PROBLEM IN A THIN CIRCULAR PLATE AND ITS THERMAL DEFLECTION

  • Tikhe, A.K.;Deshmukh, K.C.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.9 no.2
    • /
    • pp.75-82
    • /
    • 2005
  • An inverse problem of transient heat conduction in a thin finite circular plate with the given temperature distribution on the interior surface of a thin circular plate being a function of both time and position has been solved with the help of integral transform technique and also determine the thermal deflection on the outer curved surface of a thin circular plate defined as $0\;{\leq}\;r\;{\leq}\;a,\;0\;{\leq}\;z\;{\leq}\;h$. The results, obtained in the series form in terms of Bessel's functions, are illustrated numerically.

  • PDF

Dynamic Responses of Electrorheological Fluid in Steady Pressure Flow (정상압력 유동 하에서 전기유변유체의 동적 응답)

  • Nam, Yun-Joo;Park, Myeong-Kwan
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2879-2884
    • /
    • 2007
  • Dynamic responses of electrorheological (ER) fluids in steady pressure flow to stepwise electric field excitations are investigated experimentally. The transient periods under various applied electric fields and flow velocities were determined from the pressure behavior of the ER fluid in the flow channel with two parallel-plate electrodes. The pressure response times were exponentially decreased with the increase of the flow velocity, but increased with the increase of the applied electric field strength. In order to investigate the cluster structure formation of the ER particles, it was verified using the flow visualization technique that the transient response of ER fluids in the flow mode is assigned to the densification process in the competition of the electric field-induced particle attractive interaction forces and the hydrodynamic forces, unlike that in the shear mode determined by the aggregation process.

  • PDF

Transient Response of The Optimal Taper-Flat Head Slider in Magnetic Storage Devices

  • Arayavongkul, R.;Mongkolwongrojn, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.990-994
    • /
    • 2004
  • This paper presents a method to predict the transient characteristic of the air lubricated slider head in a hard disk drive by using optimization technique. The time dependent modified Reynolds equation based on the molecular slip flow approximation equations was used to describe the fluid flow within the air bearing and the implicit finite difference scheme is applied to calculate the pressure distribution under the slider head. The exhaustive search combined with the Broyden-Fletcher-Goldfarb-Shanno method were employed to obtain optimum design variables which are taper angle, rail width and taper length in order to keep the forces and moments acting on the slider head in dynamic equilibrium. The results show that the optimal head slider of the magnetic head has good stability characteristic that can reach the steady state within 0.5 microsecond.

  • PDF

An Adaptive Checkpointing Scheme for Fault Tolerance of Real-Time Control Systems with Concurrent Fault Detection (동시 결함 검출 기능이 있는 실시간 제어 시스템의 결함 허용성을 위한 적응형 체크포인팅 기법)

  • Ryu, Sang-Moon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.1
    • /
    • pp.72-77
    • /
    • 2011
  • The checkpointing scheme is a well-known technique to cope with transient faults in digital systems. This paper proposes an adaptive checkpointing scheme for the reliability improvement of real-time control systems with concurrent fault detection capability. With concurrent fault detection capability the effect of transient faults are assumed to be detected with no latency. The proposed adaptive checkpointing scheme is based on the reliability analysis of an equidistant checkpointing scheme. Numerical data show the proposed adaptive scheme outperforms the equidistant scheme from a reliability point of view.

The Transient Phenomena of Fuel Injection Nozzle for Electronic Control SI Engines (SI 機關용 電子制御 燃料噴射노즐의 過渡的 現象)

  • 김신구;김덕줄;이충원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.308-318
    • /
    • 1988
  • The liquid disintegration and characteristics of atomization through the swirl nozzle is affected by injection pressure and injection time when the liquid is injected intermittently. These transient phenomena are investigated by electronic controlled-fuel injection nozzle. The effect of injection conditions on disintegration of liquid injected through nozzle is observed photographically by using delay circuit. Droplet size of the element of the sample is measured by the liquid immersion sampling technique. SMD of droplets is varied with time and is decreased as the injection pressure increases. As the injection pressure increases, the maximum diameter of droplet and diameter of droplet which has the maximum droplet number decrease. Spray angle is not affected on injection pressure and change of spray angle with time is associated with needle movement.

A New Active Gate Drive Circuit for High Power IGBTs (대용량 IGBT를 위한 새로운 능동 게이트 구동회로)

  • 서범석;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.111-121
    • /
    • 1999
  • This paper deals with an active gate drive (AGD) technolo밍T for high power IGBTs. It is based on an optimal c combination of several requirements necessmy for good switching performance under hard switching conditions, The s scheme specifically combines together the slow drive requirements for low noise and switching stress and the fast driver requirements for high speed switching and low switching energy loss The gate drive can also effectively dampen oscillations during low cunent turnlongrightarrowon transient in the IGBT, This paper looks at the conflicting requirements of the c conventional gate dlive circuit design and the experimental results show that the proposed threelongleftarrowstage active gate dlive t technique can be an effective solution.

  • PDF

Transient Temperature Drstributions in a Adiabatic Plate Due to Resistance Spot Welding (저항점용접(抵抗點熔接)에 따른 과도적(過渡的) 냉각(冷却) 온도이력(溫度履歷))

  • Hyo-Chul,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.9 no.1
    • /
    • pp.15-20
    • /
    • 1972
  • As the technique of resistance spot welding became more and more advanced the factors hitherto considered secondary become more and more important. Among these factors the distribution of heat and temperature during resistance spot welding is particularly important in conjunction with thermal stress, strain and residual stress, strain problems. The analytical investigations upon the transient temperature due to resistance spot welding were made for the carbon steel plate and aluminum alloy plate. The numerical values obtained by the analytical investigation are nearly identical with the temperature distribution which obtained by D.J. Sullivan and some other experimental data. It was thought therefore useful to estimate the heat effect upon the material such as a residual stress and strain, metalurgical change, change in physical properties and etc.

  • PDF