• Title/Summary/Keyword: Transforming growth factor-beta

Search Result 446, Processing Time 0.039 seconds

Different Cytokine Dependency of Proneural to Mesenchymal Glioma Stem Cell Transition in Tumor Microenvironments (종양미세환경에서 이질적인 사이토카인에 의한 PN-MES 뇌종양줄기세포 전이 조절)

  • Lee, Seon Yong;Kim, Hyunggee
    • Journal of Life Science
    • /
    • v.29 no.5
    • /
    • pp.530-536
    • /
    • 2019
  • Glioblastoma (GBM) is the most incurable brain cancer derived from the transformed glial cells. Standard anti-GBM treatment, including surgery and chemoradiotherapy, does not ensure good prognosis for the patients with GBM, because successful therapy is often impeded by presence of glioma stem cells (GSCs). GSCs, which is generally divided into proneural (PN) and mesenchymal (MES) subtype, are understood as subpopulation of cancer cells responsible for GBM initiation, progression and recurrence after standard treatments. In the present study, we demonstrate that PN subtype GSCs differentially transit to MES subtype GSCs by specific cytokines. The expression of CD44, a marker of MES subtype GSCs, was observed when GSC11 PN subtype GSCs were exposed to tumor necrosis factor alpha ($TNF-{\alpha}$) cytokine and GSC23 PN subtype GSCs were treated to transforming growth factor beta 1 ($TGF-{\beta}1$) cytokine. Ivy glioblastoma atlas project (Ivy GAP) bioinformatics database showed that $TNF-{\alpha}$ and $TGF-{\beta}1$ were highly expressed in necrotic region and perivascular region, respectively. In addition, $TNF-{\alpha}$ signaling was relatively upregulated in necrotic region, while $TGF-{\beta}$ signaling was increased in perivascular region. Taken together, our observations suggest that MES subtype GSCs can be derived from various PN subtype GSCs by multimodal cytokine stimuli provided by neighboring tumor microenvironment.

Molecular Signatures of Sinus Node Dysfunction Induce Structural Remodeling in the Right Atrial Tissue

  • Roh, Seung-Young;Kim, Ji Yeon;Cha, Hyo Kyeong;Lim, Hye Young;Park, Youngran;Lee, Kwang-No;Shim, Jaemin;Choi, Jong-Il;Kim, Young-Hoon;Son, Gi Hoon
    • Molecules and Cells
    • /
    • v.43 no.4
    • /
    • pp.408-418
    • /
    • 2020
  • The sinus node (SN) is located at the apex of the cardiac conduction system, and SN dysfunction (SND)-characterized by electrical remodeling-is generally attributed to idiopathic fibrosis or ischemic injuries in the SN. SND is associated with increased risk of cardiovascular disorders, including syncope, heart failure, and atrial arrhythmias, particularly atrial fibrillation. One of the histological SND hallmarks is degenerative atrial remodeling that is associated with conduction abnormalities and increased right atrial refractoriness. Although SND is frequently accompanied by increased fibrosis in the right atrium (RA), its molecular basis still remains elusive. Therefore, we investigated whether SND can induce significant molecular changes that account for the structural remodeling of RA. Towards this, we employed a rabbit model of experimental SND, and then compared the genome-wide RNA expression profiles in RA between SND-induced rabbits and sham-operated controls to identify the differentially expressed transcripts. The accompanying gene enrichment analysis revealed extensive pro-fibrotic changes within 7 days after the SN ablation, including activation of transforming growth factor-β (TGF-β) signaling and alterations in the levels of extracellular matrix components and their regulators. Importantly, our findings suggest that periostin, a matricellular factor that regulates the development of cardiac tissue, might play a key role in mediating TGF-β-signaling-induced aberrant atrial remodeling. In conclusion, the present study provides valuable information regarding the molecular signatures underlying SND-induced atrial remodeling, and indicates that periostin can be potentially used in the diagnosis of fibroproliferative cardiac dysfunctions.

Novel Effect of Hyaluronan and Proteoglycan Link Protein 1 (HAPLN1) on Hair Follicle Cells Proliferation and Hair Growth

  • Hae Chan Ha;Dan Zhou;Zhicheng Fu;Moon Jung Back;Ji Min Jang;In Chul Shin;Dae Kyong Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.5
    • /
    • pp.550-558
    • /
    • 2023
  • Hair loss is a common condition that can have a negative impact on an individual's quality of life. The severe side effects and the low efficacy of current hair loss medications create unmet needs in the field of hair loss treatment. Hyaluronan and Proteoglycan Link Protein 1 (HAPLN1), one of the components of the extracellular matrix, has been shown to play a role in maintaining its integrity. HAPLN1 was examined for its ability to impact hair growth with less side effects than existing hair loss treatments. HAPLN1 was predominantly expressed in the anagen phase in three stages of the hair growth cycle in mice and promotes the proliferation of human hair matrix cells. Also, recombinant human HAPLN1 (rhHAPLN1) was shown to selectively increase the levels of transforming growth factor-β receptor II in human hair matrix cells. Furthermore, we observed concomitant activation of the ERK1/2 signaling pathway following treatment with rhHAPLN1. Our results indicate that rhHAPLN1 elicits its cell proliferation effect via the TGF-β2-induced ERK1/2 pathway. The prompt entering of the hair follicles into the anagen phase was observed in the rhHAPLN1-treated group, compared to the vehicle-treated group. Insights into the mechanism underlying such hair growth effects of HAPLN1 will provide a novel potential strategy for treating hair loss with much lower side effects than the current treatments.

Anti-fibrotic effects of L-2-oxothiazolidine-4-carboxylic acid via modulation of nuclear factor erythroid 2-related factor 2 in rats

  • Kim, In-Hee;Kim, Dae-Ghon;Hao, Peipei;Wang, Yunpeng;Kim, Seong-Hun;Kim, Sang-Wook;Lee, Seung-Ok;Lee, Soo-Teik
    • BMB Reports
    • /
    • v.45 no.6
    • /
    • pp.348-353
    • /
    • 2012
  • L-2-Oxothiazolidine-4-carboxylic acid (OTC) is a cysteine prodrug that maintains glutathione in tissues. The present study was designed to investigate anti-fibrotic and anti-oxidative effects of OTC via modulation of nuclear factor erythroid 2-related factor 2 (Nrf2) in an in vivo thioacetamide (TAA)-induced hepatic fibrosis model. Treatment with OTC (80 or 160 mg/kg) improved serum liver function parameters and significantly ameliorated liver fibrosis. The OTC treatment groups exhibited significantly lower expression of ${\alpha}$-smooth muscle actin, transforming growth factor-${\beta}1$, and collagen ${\alpha}1$ mRNA than that in the TAA model group. Furthermore, the OTC treatment groups showed a significant decrease in hepatic malondialdehyde level compared to that in the TAA model group. Nrf2 and heme oxygenase-1 expression increased significantly in the OTC treatment groups compared with that in the TAA model group. Taken together, these results suggest that OTC restores the anti-oxidative system by upregulating Nrf2; thus, ameliorating liver injury and a fibrotic reaction.

Wound Healing Effect of Low Molecular PDRN on Experimental Surgical Excision Rat Model (저분자화된 Polydeoxynucleotide (PDRN)의 흰쥐에 대한 외과적 창상 치유 효과)

  • Yun, Jong-Kuk;Yoon, Hye-Eun;Park, Jeong-Kyu;Kim, Mi Ryeo;Kim, Dae-Ik
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.4
    • /
    • pp.401-411
    • /
    • 2015
  • This study was performed to investigate the wound healing effect of skin regeneration cosmetics utilizing low molecular weight Polydeoxynucleotide (PDRN). High purity PDRN was prepared from salmon testes poly-deoxy-ribonucleotide through protein and toxin removal process and molecular weight reduction. In order to evaluate the wound healing effect of PDRN in SD rats, 4 sites of dorsal skin of each animal were excised by using biopsy punch and $500{\mu}L$ of test solution was topically applied once daily for 4 weeks. The tissue changes were observed for every week during the application periods. After applying the PDRN to the wound, the skin was cut flower and contraction of the wounds more quickly, and the coating of PDRN in the wound area was reduced significantly as compared to the positive control group $Fucidin^{(R)}$ applied. The microscopic observation of stained tissue showed that a positive control was most rapid in re-epithelialization ability followed by the PH group, PDRN group, HA group. In addition, transforming growth factor ($TGF-{\beta}$) and vascular endothelial growth factor (VEGF), such as in the growth factor was similar to the results of staining of tissue lesions. In conclusion, it is determined that the low molecular weight PDRN has the therapeutic effect to the wound, and could be used as a functional material of cosmetics and medical industries.

The Preventive Effect of Topical Zafirlukast Instillation for Peri-Implant Capsule Formation in Rabbits

  • Kang, Shin Hyuk;Shin, Kee Cheol;Kim, Woo Seob;Bae, Tae Hui;Kim, Han Koo;Kim, Mi Kyung
    • Archives of Plastic Surgery
    • /
    • v.42 no.2
    • /
    • pp.179-185
    • /
    • 2015
  • Background Capsular contracture is the most troublesome complication in breast implant surgery. Although capsule formation can be seen as a normal reaction to a foreign body, it can induce pain, hardness, deformity, and other pathologic problems. Surgical intervention is required in severe cases, but even surgery cannot guarantee a successful outcome without recurrence. This experimental study confirms that single topical administration of leukotriene antagonist zafirlukast (Accolate, Astrazeneca) reduces peri-implant capsule formation and prevents capsular contracture. Methods Twelve smooth-surfaced cohesive gel implants were implanted in New Zealand White rabbits. These miniature implants were designed to be identical to currently used products for breast augmentation. The rabbits were divided into 2 groups. In the experimental group (n=6), the implant and normal saline with zafirlukast were inserted in the submuscular pocket. In the control group (n=6), the implant and normal saline alone were used. Two months later, the implants with peri-implant capsule were excised. We evaluated capsule thickness and collagen pattern and performed immunohistochemical staining of myofibroblasts, transforming growth factor $(TGF)-{\beta}1$, 2. Results The thickness of the capsules in the experimental group was reduced in both dorsal and ventral directions. The collagen pattern showed parallel alignment with low density, and the number of myofibroblasts as well as the amounts of $TGF-{\beta}1$ and $TGF-{\beta}2$ were reduced in the experimental group. Conclusions We suggest that single topical administration of leukotriene antagonist zafirlukast can be helpful in reducing capsule formation and preventing capsular contracture via myofibroblast suppression, modulation of fibroblastic cytokines, and anti-inflammatory effect.

Analysis and characterization of the functional TGFβ receptors required for BMP6-induced osteogenic differentiation of mesenchymal progenitor cells

  • Zhang, Yan;Zhang, De-Ying;Zhao, Yan-Fang;Wang, Jin;He, Juan-Wen;Luo, Jinyong
    • BMB Reports
    • /
    • v.46 no.2
    • /
    • pp.107-112
    • /
    • 2013
  • Although BMP6 is highly capable of inducing osteogenic differentiation of mesenchymal progenitor cells (MPCs), the molecular mechanism involved remains to be fully elucidated. Using dominant negative (dn) mutant form of type I and type II $TGF{\beta}$ receptors, we demonstrated that three dn-type I receptors (dnALK2, dnALK3, dnALK6), and three dn-type II receptors (dnBMPRII, dnActRII, dnActRIIB), effectively diminished BMP6-induced osteogenic differentiation of MPCs. These findings suggested that ALK2, ALK3, ALK6, BMPRII, ActRII and ActRIIB are essential for BMP6-induced osteogenic differentiation of MPCs. However, MPCs in this study do not express ActRIIB. Moreover, RNA interference of ALK2, ALK3, ALK6, BMPRII and ActRII inhibited BMP6-induced osteogenic differentiation in MPCs. Our results strongly suggested that BMP6-induced osteogenic differentiation of MPCs is mediated by its functional $TGF{\beta}$ receptors including ALK2, ALK3, ALK6, BMPRII, and ActRII.

Immune Reconstitution of CD4+T Cells after Allogeneic Hematopoietic Stem Cell Transplantation and its Correlation with Invasive Fungal Infection in Patients with Hematological Malignancies

  • Peng, Xin-Guo;Dong, Yan;Zhang, Ting-Ting;Wang, Kai;Ma, Yin-Jian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.8
    • /
    • pp.3137-3140
    • /
    • 2015
  • Objective: To explore the immune reconstitution of $CD4^+T$ cells after allogeneic hematopoietic stem cell transplantation (Allo-HSCT) and its relationship with invasive fungal infection (IFI) in patients with hematological malignancies. Materials and Methods: Forty-seven patients with hematological malignancies undergoing Allo-HSCT in Binzhou Medical University Hospital from February, 2010 to October, 2014 were selected. At 1, 2 and 3 months after transplantation, the immune subpopulations and concentration of cytokines were assessed respectively using flow cytometry (FCM) and enzyme linked immunosorbent assay (ELISA). The incidence of IFI after transplantation and its correlation with immune reconstitution of $CD4^+T$ cells were investigated. Results: The number of $CD4^+T$ cells and immune subpopulations increased progressively after transplantation as time went on, but the subpopulation cell count 3 months after transplantation was still significantly lower than in the control group (p<0.01). In comparison to the control group, the levels of interleukin-6 (IL-6) and IL-10 after transplantation rose evidently (p<0.01), while that of transforming growth factor-${beta}$ (TGF-${beta}$) was decreased (p<0.01). There was no statistically significant difference level of interferon-${\gamma}$ (IFN-${\gamma}$) (p>0.05). The incidence of IFI was 19.2% (9/47), and multivariate logistic regression revealed that IFI might be related to Th17 cell count (p<0.05), instead of Th1, Th2 and Treg cell counts as well as IL-6, IL-10, TGF-${beta}$ and IFN-${\gamma}$ levels (p>0.05). Conclusions: After Allo-HSCT, the immune reconstitution of $CD4^+T$ cells is delayed and Th17 cell count decreases obviously, which may be related to occurrence of IFI.

Maternal Psychosocial Factors that Affect Breastfeeding Adaptation and Immune Substances in Human Milk (산모의 모유수유 적응과 모유 내 면역물질에 영향을 미치는 심리사회적 요인)

  • Kim, Eun Sook;Jeong, Mi Jo;Kim, Sue;Shin, Hyun-A;Lee, Hyang Kyu;Shin, Kayoung;Han, Jee Hee
    • Women's Health Nursing
    • /
    • v.20 no.1
    • /
    • pp.14-28
    • /
    • 2014
  • Purpose: This study was to identify relationships of maternal psychosocial factors including mother's mood state, childcare stress, social support and sleep satisfaction with breastfeeding adaptation and immune substances in breast milk, especially secretory immunoglobulin A (sIgA) and transforming growth factor-beta 2 (TGF-${\beta}2$). Methods: Data were collected from 84 mothers who delivered full-term infants by natural childbirth. Structured questionnaires and breast milk were collected at 2~4 days and 6 weeks postpartum. Data were analyzed using descriptive statistics, Pearson's correlation, multiple linear regression, and generalized estimating equation (GEE). Results: Scores for the breastfeeding adaptation scale were significantly related with child care stress, mood state and social support. Mother's anger was positively correlated with the level of sIgA in colostrum (p<.01). Immune substances of breastmilk was significantly influenced by time for milk collection (p<.001) and the type of breastfeeding (sIgA, p<.001, TGF-${\beta}2$, p=.003). Regression analysis showed that breastfeeding adaptation could be explained 59.1% by the type of breastfeeding, childcare stress, the Profile of Mood States, emotional support and sleep quality (F=16.67, p<.001). Conclusion: The findings from this study provide important concepts of breastfeeding adaptation program and explanation of psychosocial factors by immune substances in breast milk. Future research, specially, bio-maker research on breast milk should focus on the ways to improve breastfeeding adaptation.

Korean Red Ginseng alleviates dehydroepiandrosterone-induced polycystic ovarian syndrome in rats via its antiinflammatory and antioxidant activities

  • Choi, Jong Hee;Jang, Minhee;Kim, Eun-Jeong;Lee, Min Jung;Park, Kyoung Sun;Kim, Seung-Hyun;In, Jun-Gyo;Kwak, Yi-Seong;Park, Dae-Hun;Cho, Seung-Sik;Nah, Seung-Yeol;Cho, Ik-Hyun;Bae, Chun-Sik
    • Journal of Ginseng Research
    • /
    • v.44 no.6
    • /
    • pp.790-798
    • /
    • 2020
  • Background: Beneficial effects of Korean Red Ginseng (KRG) on polycystic ovarian syndrome (PCOS) remains unclear. Methods: We examined whether pretreatment (daily from 2 hours before PCOS induction) with KRG extract in water (KRGE; 75 and 150 mg/kg/day, p.o.) could exert a favorable effect in a dehydroepian-drosterone (DHEA)-induced PCOS rat model. Results: Pretreatment with KRGE significantly inhibited the elevation of body and ovary weights, the increase in number and size of ovarian cysts, and the elevation of serum testosterone and estradiol levels induced by DHEA. Pretreatment with KRGE also inhibited macrophage infiltration and enhanced mRNA expression levels of chemokines [interleukin (IL)-8, monocyte chemoattractant protein-1), proinflammatory cytokines (IL-1β, IL-6), and inducible nitric oxide synthase in ovaries induced by DHEA. It also prevented the reduction in mRNA expression of growth factors (epidermal growth factor, transforming growth factor-beta (EGF, TGF-β)) related to inhibition of the nuclear factor kappa-light-chain-enhancer of activated B cell pathway and stimulation of the nuclear factor erythroid-derived 2-related factor 2 pathway. Interestingly, KRGE or representative ginsenosides (Rb1, Rg1, and Rg3(s)) inhibited the activity of inflammatory enzymes cyclooxygenase-2 and iNOS, cytosolic p-IκB, and nuclear p-nuclear factor kappa-light-chain-enhancer of activated B in lipopolysaccharide-induced RAW264.7 cells, whereas they increased nuclear factor erythroid-derived 2-related factor 2 nuclear translocation. Conclusion: These results provide that KRGE could prevent DHEA-induced PCOS via antiinflammatory and antioxidant activities. Thus, KRGE may be used in preventive and therapeutic strategies for PCOS-like symptoms.