DOI QR코드

DOI QR Code

Different Cytokine Dependency of Proneural to Mesenchymal Glioma Stem Cell Transition in Tumor Microenvironments

종양미세환경에서 이질적인 사이토카인에 의한 PN-MES 뇌종양줄기세포 전이 조절

  • Lee, Seon Yong (Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University) ;
  • Kim, Hyunggee (Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University)
  • 이선용 (고려대학교 생명공학과) ;
  • 김형기 (고려대학교 생명공학과)
  • Received : 2019.03.13
  • Accepted : 2019.04.19
  • Published : 2019.05.30

Abstract

Glioblastoma (GBM) is the most incurable brain cancer derived from the transformed glial cells. Standard anti-GBM treatment, including surgery and chemoradiotherapy, does not ensure good prognosis for the patients with GBM, because successful therapy is often impeded by presence of glioma stem cells (GSCs). GSCs, which is generally divided into proneural (PN) and mesenchymal (MES) subtype, are understood as subpopulation of cancer cells responsible for GBM initiation, progression and recurrence after standard treatments. In the present study, we demonstrate that PN subtype GSCs differentially transit to MES subtype GSCs by specific cytokines. The expression of CD44, a marker of MES subtype GSCs, was observed when GSC11 PN subtype GSCs were exposed to tumor necrosis factor alpha ($TNF-{\alpha}$) cytokine and GSC23 PN subtype GSCs were treated to transforming growth factor beta 1 ($TGF-{\beta}1$) cytokine. Ivy glioblastoma atlas project (Ivy GAP) bioinformatics database showed that $TNF-{\alpha}$ and $TGF-{\beta}1$ were highly expressed in necrotic region and perivascular region, respectively. In addition, $TNF-{\alpha}$ signaling was relatively upregulated in necrotic region, while $TGF-{\beta}$ signaling was increased in perivascular region. Taken together, our observations suggest that MES subtype GSCs can be derived from various PN subtype GSCs by multimodal cytokine stimuli provided by neighboring tumor microenvironment.

교모세포종은 형질 전환된 신경 교세포로부터 유래한 악성 종양이다. 교모세포종의 치료는 외과적 수술을 포함한 약물 및 방사선 치료를 통해 진행된다. 그러나 이러한 치료 과정이 환자의 예후에 크게 기여하지 못하는 실정이다. 교모세포종 치료의 어려움 중 하나로 뇌종양줄기세포의 존재를 들 수 있다. 주요하게 proneural (PN) 아형과 mesenchymal (MES) 아형으로 나누어지는 뇌종양줄기세포는 교모세포종의 발달, 유지 및 항암 치료 후 재발의 원인이 되는 암세포로 이해되고 있다. 본 연구에서는 PN 아형 뇌종양줄기세포들이 특정 사이토카인에 선택적으로 MES 아형으로 전이가 될 수 있다는 것에 중점을 두고 실험을 진행하였다. PN 아형 뇌종양줄기세포 중 GSC11 세포는 $TNF-{\alpha}$ 사이토카인에 의해, 그리고 GSC23 세포는 $TGF-{\beta}1$ 사이토카인에 노출이 될 때 MES 아형 뇌종양줄기세포의 표지 인자인 CD44의 발현 증가가 관찰되었다. 또한, Ivy Glioblastoma Atlas Project (Ivy GAP) 데이터 베이스를 통해, $TNF-{\alpha}$$TGF-{\beta}1$은 종양미세환경을 구성하는 요소 중 각각 괴사 부위와 미세혈관 주위에서 높은 발현을 보임을 확인하였다. 따라서 본 연구 결과는 PN 아형의 뇌종양줄기세포가 특정 종양미세환경에서 조절되는 다양한 종류의 사이토카인 신호에 의해 MES 아형으로의 전이가 결정될 수 있다는 가능성을 시사한다.

Keywords

SMGHBM_2019_v29n5_530_f0001.png 이미지

Fig. 1. Expression levels of glioma stem cell marker genes in both PN and MES subtype glioma stem cells (GSCs).

SMGHBM_2019_v29n5_530_f0002.png 이미지

Fig. 2. PN-to-MES transition by different cytokine dependency in CD133+/SOX2+ PN subtype GSCs.

SMGHBM_2019_v29n5_530_f0003.png 이미지

Fig. 3. Regional specific regulation of TNF-α and TGF-β1 signaling pathway within tumor microenvironments.

References

  1. Bhat, K. P. L., Balasubramaniyan, V., Vaillant, B., Ezhilarasan, R., Hummelink, K., Hollingsworth, F., Wani, K., Heathcock, L., James, J. D., Goodman, L. D., Conroy, S. Long, L., Lelic, N., Wang, S., Gumin, J., Raj, D., Kodama, Y., Raghunathan, A., Olar, A., Joshi, K., Pelloski, C. E., Heimberger, A., Kim, S. H., Cahill, D. P., Rao, G., Den Dunnen, W. F. A., Boddeke, H. W. G. M., Phillips, H. S., Nakano, I., Lang, F. F., Colman, H., Sulman, E. P. and Aldape, K. 2013. Mesenchymal differentiation mediated by NF-${\kappa}B$ promotes radiation resistance in glioblastoma. Cancer Cell 24, 331-346. https://doi.org/10.1016/j.ccr.2013.08.001
  2. Gupta, P. B., Pastushenko, I., Skibinski, A., Blanpain, C. and Kuperwasser, C. 2019. Phenotypic plasticity: driver of cancer initiation, progression, and therapy resistance. Cell Stem Cell 24, 65-78. https://doi.org/10.1016/j.stem.2018.11.011
  3. Jones, C. and Baker, S. J. 2014. Unique genetic and epigenetic mechanisms driving signatures of paediatric diffuse high-grade glioma. Nat. Rev. Cancer 14, 651-661. https://doi.org/10.1038/nrc3811
  4. Kim, S. H., Ezhilarasan, R., Phillips, E., Gallego-Perez, D., Sparks, A., Taylor, D., Ladner, K., Furuta, T., Sabit, H., Chhipa, R., Cho, J. H., Mohyeldin, A., Beck, S., Kurozumi, K., Kuroiwa, T., Iwata, R., Asai, A., Kim, J., Sulman, E. P., Cheng, S. Y., Lee, L. J., Nakada, M., Guttridge, D., DasGupta, B., Goidts, V., Bhat, K. P. and Nakano, I. 2016. Serine/Threonine Kinase MLK4 determines mesenchymal identity in glioma stem cells in an NF-${\kappa}B$-dependent manner. Cancer Cell 29, 201-213. https://doi.org/10.1016/j.ccell.2016.01.005
  5. Klonisch, T., Wiechec, E., Hombach-Klonisch, S., Ande, S. R., Wesselborg, S., Schulze-Osthoff, K. and Los, M. 2008. Cancer stem cell markers in common cancers - therapeutic implications. Trends Mol. Med. 14, 450-460. https://doi.org/10.1016/j.molmed.2008.08.003
  6. Lathia, J. D., Mack, S. C., Mulkearns-Hubert, E. E., Valentim, C. L. and Rich, J. N. 2015. Cancer stem cells in glioblastoma. Genes Dev. 29, 1203-1217. https://doi.org/10.1101/gad.261982.115
  7. Louis, D. N., Ohgaki, H., Wiestler, O. D., Cavenee, W. K., Burger, P. C., Jouvet, A., Scheithauer, B. W. and Kleihues, P. 2007. The 2007 WHO classification of tumours of the central nervous system. Acta. Neuropathol. 114, 97-109. https://doi.org/10.1007/s00401-007-0243-4
  8. Lu, Y., Jiang, F., Zheng, X., Katakowski, M., Buller, B., To, S. S. and Chopp, M. 2011. TGF-${\beta}1$ promotes motility and invasiveness of glioma cells through activation of ADAM17. Oncol. Rep. 25, 1329-1335.
  9. Mao, P., Joshi, K., Li, J., Kim, S. H., Li, P., Santana-Santos, L., Luthra, S., Chandran, U. R., Benos, P. V., Smith, L., Wang, M., Hu, B., Cheng, S. Y., Sobol, R. W. and Nakano, I. 2013. Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3. Proc. Natl. Acad. Sci. USA. 110, 8644-8649. https://doi.org/10.1073/pnas.1221478110
  10. Phillips, H. S., Kharbanda, S., Chen, R., Forrest, W. F., Soriano, R. H., Wu, T. D., Misra, A., Nigro, J. M., Colman, H., Soroceanu, L., Williams, P. M., Modrusan, Z., Feuerstein, B. G. and Aldape, K. 2006. Molecular subclasses of highgrade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9, 153-173. https://doi.org/10.1016/j.ccr.2006.02.027
  11. Segerman, A., Niklasson, M., Haglund, C., Bergstrom, T., Jarvius, M., Xie, Y., Westermark, A., Sonmez, D., Hermansson, A., Kastemar, M., Naimaie-Ali, Z., Nyberg, F., Berglund, M., Sundstrom, M., Hesselager, G., Uhrbom, L., Gustafsson, M., Larsson, R., Fryknas, M., Segerman, B. and Westermark, B. 2016. Clonal variation in drug and radiation response among glioma-initiating cells is linked to proneural- mesenchymal transition. Cell Rep. 17, 2994-3009. https://doi.org/10.1016/j.celrep.2016.11.056
  12. Shah, N., Feng, X., Lankerovich, M., Puchalski, R. B. and Keogh, B. 2016. Data from Ivy GAP. The Cancer Imaging Archive.
  13. Stupp, R., Mason, W. P., van den Bent, M. J., Weller, M., Fisher, B., Taphoorn, M. J., Belanger, K., Brandes, A. A., Marosi, C., Bogdahn, U., Curschmann, J., Janzer, R. C., Ludwin, S. K., Gorlia, T., Allgeier, A., Lacombe, D., Cairncross, J. G., Eisenhauer, E. and Mirimanoff, R. O.; European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group. 2005. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987-996. https://doi.org/10.1056/NEJMoa043330
  14. Verhaak, R. G., Hoadley, K. A., Purdom, E., Wang, V., Qi, Y., Wilkerson, M. D., Miller, C. R., Ding, L., Golub, T., Mesirov, J. P., Alexe, G., Lawrence, M., O'Kelly, M., Tamayo, P., Weir, B. A., Gabriel, S., Winckler, W., Gupta, S., Jakkula, L., Feiler, H. S., Hodgson, J. G., James, C. D., Sarkaria, J. N., Brennan, C., Kahn, A., Spellman, P. T., Wilson, R. K., Speed, T. P., Gray, J. W., Meyerson, M., Getz, G., Perou, C. M. and Hayes, D. N.; Cancer Genome Atlas Research Network. 2010. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98-110. https://doi.org/10.1016/j.ccr.2009.12.020
  15. Yin, J., Oh, Y. T., Kim, J. Y., Kim, S. S., Choi, E., Kim, T. H., Hong, J. H., Chang, N., Cho, H. J., Sa, J. K., Kim, J. C., Kwon, H. J., Park, S., Lin, W., Nakano, I., Gwak, H. S., Yoo, H., Lee, S. H., Lee, J., Kim, J. H., Kim, S. Y., Nam, D. H., Park, M. J. and Park, J. B. 2017. Transglutaminase 2 Inhibition Reverses Mesenchymal Transdifferentiation of Glioma Stem Cells by Regulating C/$EBP{\beta}$ Signaling. Cancer Res. 77, 4973-4984. https://doi.org/10.1158/0008-5472.CAN-17-0388
  16. Zhou, B. B., Zhang, H., Damelin, M., Geles, K. G., Grindley, J. C. and Dirks, P. B. 2009. Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat. Rev. Drug Discov. 8, 806-823. https://doi.org/10.1038/nrd2137