DOI QR코드

DOI QR Code

Wound Healing Effect of Low Molecular PDRN on Experimental Surgical Excision Rat Model

저분자화된 Polydeoxynucleotide (PDRN)의 흰쥐에 대한 외과적 창상 치유 효과

  • 윤종국 ((재)대구테크노파크 한방산업지원센터) ;
  • 윤혜은 ((주)한국비엔씨) ;
  • 박정규 ((주)한국비엔씨) ;
  • 김미려 ((재)대구테크노파크 한방산업지원센터) ;
  • 김대익 ((재)대구테크노파크 한방산업지원센터)
  • Received : 2015.11.20
  • Accepted : 2015.12.28
  • Published : 2015.12.30

Abstract

This study was performed to investigate the wound healing effect of skin regeneration cosmetics utilizing low molecular weight Polydeoxynucleotide (PDRN). High purity PDRN was prepared from salmon testes poly-deoxy-ribonucleotide through protein and toxin removal process and molecular weight reduction. In order to evaluate the wound healing effect of PDRN in SD rats, 4 sites of dorsal skin of each animal were excised by using biopsy punch and $500{\mu}L$ of test solution was topically applied once daily for 4 weeks. The tissue changes were observed for every week during the application periods. After applying the PDRN to the wound, the skin was cut flower and contraction of the wounds more quickly, and the coating of PDRN in the wound area was reduced significantly as compared to the positive control group $Fucidin^{(R)}$ applied. The microscopic observation of stained tissue showed that a positive control was most rapid in re-epithelialization ability followed by the PH group, PDRN group, HA group. In addition, transforming growth factor ($TGF-{\beta}$) and vascular endothelial growth factor (VEGF), such as in the growth factor was similar to the results of staining of tissue lesions. In conclusion, it is determined that the low molecular weight PDRN has the therapeutic effect to the wound, and could be used as a functional material of cosmetics and medical industries.

본 연구에서는 피부재생 화장품 소재로 활용하고자 저분자화 시킨 Polydeoxynucleotide (PDRN)의 창상 치유 효과를 조사하였다. 이를 위하여 연어 정소 유래 PDRN 단백질 제거공정, 내독소 제거공정을 거쳐 순수분리 정제하였고 분자량 저감공정을 거쳐 기존 PDRN 보다 피부 침투율을 높인 고순도 PDRN을 제조하였다. 상처 치료 과정 중 PDRN 처리에 의한 효능을 평가하기 위해 sprague-dawley rats (SD)의 배부에 bioxy punch를 이용한 4개의 창상을 유발하고, 시료를 포함한 총 5종의 실험시료를 마리당 $500{\mu}L$씩 도포한 후 7일 간격으로 4주간 피부조직 변화를 관찰하였다. 상처에 PDRN을 도포한 후, 절개된 상처의 표피화와 수축이 더 빨라졌고, 창상면적에 있어서 PDRN의 도포는 양성대조군인 $Fucidin^{(R)}$ 도포군과 비교하여 유의하게 줄어들었다. 염색한 조직의 현미경 관찰 결과에서는 양성대조군이 가장 빠르게 재상피화가 이루어졌으며, 그 다음으로는 PH군, PD군, HA군으로 교원질 재합성 및 형성 수준을 보였다. 또한, 병변의 형질전환성장인자($TGF-{\beta}$) 및 혈관 내피성장인자(VEGF) 등의 성장인자에서도 염색 조직의 결과와 유사하게 나타났다. 이러한 결과를 종합하여 볼때, 저분자화된 PDRN은 창상에 치료효과가 있다고 판단되며, 화장품 및 의료산업 분야의 기능성 소재로 활용 가능할 것으로 판단되어 진다.

Keywords

References

  1. M. J. Lee and J. M. Park, A study of patent examination practice for the use claims of cosmeceuticals, J. Soc. Cosmet. Scientists Korea, 40(2), 215 (2014). https://doi.org/10.15230/SCSK.2014.40.2.215
  2. J. M. Park, S. P. Lee, and E. S. Son, An analysis on the regulations, technology, and market of cosmeceuticals, Kor. J. Technol. Innovat. Soc., 5, 293 (2002).
  3. K. M. Choi, C. W. Lee, and M. Y. Lee, Effect of ore minerals in the healing of full-thickness skin injury model of rat, J. Environ Sci., 17, 809 (2008).
  4. D. R. Waldron and N. Zimmerman-Pope, Superficial skin wounds, 259, Saunders, Philadelphia, USA (2003).
  5. L. Forrest, Current concepts in soft connective tissue wound healing, British Journal of Surgery, 70(3), 133 (1983). https://doi.org/10.1002/bjs.1800700302
  6. E. E. Peacock, Wound repair, 38, WB Saunders, Philadelpia, USA (1984).
  7. A. J. Hatamochi, K. Mori, and H. Ueki, Role of cytokines in controlling connective tissue gene expression, Arch. Dermatol. Res., 287(1), 115 (1994). https://doi.org/10.1007/BF00370729
  8. U. Hiroshi, Y. Haruo, T. Ichiro, K. Naoki, M. Mitsunobu, O. Masahiro, K. Tsuyoshi, and F. Toru, Accelerating effects of chitosan for healing at early phase of experimental open wound in dogs, Biomaterials, 20(15), 1407 (1999). https://doi.org/10.1016/S0142-9612(99)00046-0
  9. E. Christophers and U. Mrowietz, In Fitzpatrick's Dermatology in General Medicine, eds. M. Irwin, A. Z. Eisen, K. Wolff, K. F. Austen, L. A. Goldsmith, and S. I. Katz, 6thed, 407, Freedberg, New York, USA (2003).
  10. C. J. Kim, Pathophysiology, 61, Shinilbooks, Seoul, Korea (1988).
  11. Y. H. Kim, J. H. Lee, K. H. Min, S. H. Hong, W. M. Lee, and J. H. Jun, The Wound healing effect of PDRN (polydeoxyribonucleotide) material on full thickness skin defect in the mouse, J. Korean Soc. Plast. Reconstr. Surg., 37(3), 220 (2010).
  12. Y. Hayashi, S. Tsuji, M. Tsuji, T. Nishida, S. Ishii, H. Iilima, T. Nakamura, H. Eguchi, E. Miyoshi, N. Hayashi, and S. Kawano, Topical implantation of mesenchymal stem cells has beneficial effects on healing of experimental colitis in rats, J. Pharmacol. Exp. Ther., 326(2), 523 (2008). https://doi.org/10.1124/jpet.108.137083
  13. D. O. Han, G. H. Kim, Y. B. Choi, I. S. Shim, H. J. Lee, Y. G. Lee, J. H. Kim, G. T. Chang, and D. H. Hahm, Healing effects of Astragali radix extracts on experimental open wounds in rats, Korean J. Oriental Physiology & Pathology, 19(1), 92 (2005).
  14. S. M. Han, K. G. Lee, J. H. Yeo, H. Y. Kweon, S. O. Woo, H. J. Baek, and K. K. Park, The effects of Bombyx mori silk protein for the expression of epithelial growth factor in the wound healing process of the hairless mouse, Korean J. Seric. Sci., 48(2), 56 (2006).
  15. J. Y. Kim, H. J. Kim, J. B. Lee, S. D. Seong, and Y. S. Cho, Effectiveness of polydeoxyribonu-cleotide (PDRN) material on murine subcutaneous laceration wounds, J. Korean Soc. Emerg. Med., 24(4), 453 (2013).
  16. P. Martin, Wound healing-aiming for perfect skin regeneration, Science, 276(5309), 75 (1997). https://doi.org/10.1126/science.276.5309.75
  17. J. S. Park, J. Y. Kim, J. Y. Cho, J. S. Kang, and Y. H. Yu, Epidermal growth factor (EGF) antagonizes transforming growth factor (TGF)-beta1-induced collagen lattice contraction by human skin fibroblasts, Biol. Pharm. Bull., 23(12), 1517 (2000). https://doi.org/10.1248/bpb.23.1517
  18. A. Schmitt-Graff, A. Desmouliere, and G. Gabbiani, Heterogeneity of myofibroblast phenotypic features: an example of fibroblastic cell plasticity, Virchows Arch., 425(1), 3 (1994). https://doi.org/10.1007/BF00193944
  19. G. Gabbiani, The cellular derivation and the life span of the myofibroblas, Pathol. Res. Pract., 192(7), 708 (1996). https://doi.org/10.1016/S0344-0338(96)80092-6
  20. L. Macri, D. Silverstein, and R. A. Clark, Growth factor binding to the pericellular matrix and its importance in tissue engineering, Adv. Drug Deliv. Rev., 59(13), 1366, (2007). https://doi.org/10.1016/j.addr.2007.08.015
  21. M. Detmar, L. F. Brown, B. Berse, R. W. Jacman, B. M. Elicker, H. F. Dvorak, and K. P. Claffey, Hypoxia regulates the expression of vascular permeability factor (VPF, VEGF) and its receptor in the human skin, J. Invest. Dermatol., 108(3), 263 (1997). https://doi.org/10.1111/1523-1747.ep12286453
  22. M. Kapoor, R. Howard, I. Hall, and I. Appleton, Effects of epicatechin gallate on wound healing and scar formation in a full thickness incisional wound healing model in rats, Am. J. Pathol., 165(1), 299 (2004). https://doi.org/10.1016/S0002-9440(10)63297-X
  23. K. J. Rolfe, J. Richardson, C. Vigor, L. M. Irvine, A. O. Grobbelaar, and C. Linge, A role for TGF-$\beta$1-induced cellular responses during wound healing of the non-scarring early human fetus, J. Invest. Dermatol., 127(11), 2656 (2007). https://doi.org/10.1038/sj.jid.5700951