DOI QR코드

DOI QR Code

Antioxidative Effects and Tyrosinase Inhibitory Activities of Mate (Ilex paraguariensis) Extract/Fractions

마테(Ilex paraguariensis) 추출물/분획물의 항산화능 및 타이로시네이즈 저해 활성

  • Kong, Bong Ju (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Kim, Yong Jae (Hansung Science High School) ;
  • Baek, Jee Seon (Hansung Science High School) ;
  • Lee, Da Bin (Hansung Science High School) ;
  • Lee, Ji Won (Hansung Science High School) ;
  • Min, Na Young (Hansung Science High School) ;
  • Kim, A Young (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Park, Soo Nam (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology)
  • 공봉주 (서울과학기술대학교 정밀화학과 화장품종합기술연구소) ;
  • 김용재 (한성과학고등학교) ;
  • 백지선 (한성과학고등학교) ;
  • 이다빈 (한성과학고등학교) ;
  • 이지원 (한성과학고등학교) ;
  • 민나영 (한성과학고등학교) ;
  • 김아영 (서울과학기술대학교 정밀화학과 화장품종합기술연구소) ;
  • 박수남 (서울과학기술대학교 정밀화학과 화장품종합기술연구소)
  • Received : 2015.10.18
  • Accepted : 2015.11.22
  • Published : 2015.12.30

Abstract

In the present study, 50% ethanol extract, the ethyl acetate and aglycone fraction were prepared from mate (Ilex paraguariensis) and their antioxidative ability was evaluated. The yields of extract and fractions were 32.0, 4.48 and 0.82% per dried powder, respectively. Free radical scavenging activities were performed by 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay and total antioxidant capacity was estimated using luminol-dependent chemiluminescence assay. Free radical scavenging activities ($FSC_{50}$) of 50 % ethanol extract, ethyl acetate fraction and aglycone fraction were 8.83, 5.84 and $6.05{\mu}g/mL$, respectively. Their total antioxidant capacities ($OSC_{50}$) were similar to that of L-ascorbic acid ($1.72{\mu}g/mL$), known as a prominent water soluble antioxidant, in all extracts and 50% ethanol extract ($1.03{\mu}g/mL$) was the most effective. The cellular protective effects on the $^1O_2$-induced cellular damage of erythrocytes were evaluated and the results showed that all extracts were significantly higher than (+)-${\alpha}$-tocopherol at $10{\mu}g/mL$. Especially, the ${\tau}_{50}$ value of aglycone fraction was 5 times higher than (+)-${\alpha}$-tocopherol at $10{\mu}g/mL$ and $50{\mu}g/mL$. The inhibitory effects of the ethyl acetate and aglycone fractions on tyrosinase were similar to arbutin, known as the whitening agent in cosmetics. These results suggest that the extracts of mate have the applicability as antioxidant and anti-aging cosmeceutical ingredients.

본 연구에서는 마테(Ilex paraguariensis)로부터 50% 에탄올 추출물, 에틸아세테이트 분획물 및 아글리콘 분획물을 제조하였고 이들 추출물/분획물에 대하여 항산화능을 평가하였다. 추출물 및 분획물의 수율은 건조분말 당 각각 32.0, 4.48 및 0.82%를 나타냈다. 1,1-Phenyl-2-picrylhydrazyl (DPPH) 라디칼 시험법을 이용한 자유 라디칼 소거 활성과 루미놀 발광법을 이용한 총 항산화능을 평가하였다. 50% 에탄올 추출물, 에틸아세테이트 분획물 및 아글리콘 분획물의 라디칼 소거활성($FSC_{50}$)은 각각 8.83, 5.84 및 $6.05{\mu}g/mL$이었다. 추출물 및 분획물의 총항산화능($OSC_{50}$)은 모든 추출물이 비교 대조군으로 사용한 L-ascorbic acid ($1.72{\mu}g/mL$)과 유사한 항산화능을 나타냈으며. 50% 에탄올 추출물의 경우 $OSC_{50}$$1.03{\mu}g/mL$로 활성이 가장 큰 것으로 평가되었다. $^1O_2$로 유도된 세포 손상에 대한 보호 효과 실험에서 모든 추출물은 $10{\mu}g/mL$ 농도에서 비교 대조군인 (+)-${\alpha}$-tocopherol과 유의적으로 큰 세포 보호 활성(${\tau}_{50}$)을 나타내었다. 특히 아글리콘 분획물은 10 및 $50{\mu}g/mL$ 농도에서의 세포 보호 효과가 (+)-${\alpha}$-tocopherol 보다 약 5배나 크게 나타났다. 에틸아세테이트 분획과 아글리콘 분획의 tyrosinase에 대한 저해 효과는 미백제로 알려진 알부틴과 유사하였다. 이상의 결과들은 마테 추출물이 항산화 및 항노화 화장품 원료로서 응용 가능성이 있음을 시사한다.

Keywords

References

  1. K. Scharffetter-Kochanek, M. Wlaschek, K. Briviba, and H. Sies, Singlet oxygen induces collagenase expression in human skin fibroblasts, FEBS Lett., 331, 304 (1993). https://doi.org/10.1016/0014-5793(93)80357-Z
  2. M. Wlaschek, K. Briviba, G. P. Stricklin, H. Sies, and K. Scharffetter-Kochanek, Singlet oxygen may mediate the ultraviolet A induced synthesis of intestitial collagenase, J. Invest. Dermatol., 104, 194 (1995). https://doi.org/10.1111/1523-1747.ep12612751
  3. S. N. Park, Skin aging and antioxidant, J. Soc. Cosmet. Scientists Korea, 23(3), 75 (1997).
  4. S. N. Park, Antioxidative properties of baicalein, component from Scutellaria baicalensis Georgi and its application to cosmetics (I), J. Korean Ind. Eng. Chem., 14(5), 657 (2003).
  5. S. N. Park, Effect of natural products on skin cells: action and suppression of reactive oxygen species, J. Soc. Cosmet. Scientists Korea, 25(2), 77 (1999).
  6. H. Masaki, Role of antioxidants in the skin: antiaging effects, J. Dermatol. Sci., 58, 85 (2010). https://doi.org/10.1016/j.jdermsci.2010.03.003
  7. H. M. Chiang, H. C. Chen, H. H. Chiu, C. W. Chen, S. M. Wang, and K. C. Wen, Neonauclea reticulata (Havil.) Merr stimulates skin regeneration after UVB exposure via ROS scavenging and modulation of the MAPK/MMPs/collagen pathway, Evid. Based Complement. Alternat. Med., 2013, 9 (2013).
  8. D. Bagchi, M. Bagchi, E. A. Hassoun, and S. J. Stohs, In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selected pesticides, Toxicology, 104, 129 (1995). https://doi.org/10.1016/0300-483X(95)03156-A
  9. M. Iwata, T. Corn, S. Iwata, M. A. Everett, B. B. Fuller, The relationship between tyrosinase activity and skin color in human foreskins, J. Invest. Dermatol., 95, 9 (1990). https://doi.org/10.1111/1523-1747.ep12872677
  10. K. Kameyama, T. Takemura, Y. Hamada, C. Sakai, S. Kondoh, S. Nishi-yama, Pigment production in murine melanoma cells is regulated by tyrosinase, tyrosinase- related protein 1 (TRP), dopachrome tautomerase (TRP 2) and a melanogenic inhibitor, J. Invest. Dermatol. 100, 126 (1993). https://doi.org/10.1111/1523-1747.ep12462778
  11. S. A. Park, J. H. Ha, and S. N. Park, Antioxidative activity and component analysis of Broussonetia kazinoki SIEB extracts, Appl. Chem. Eng., 24(2), 177 (2013).
  12. S. N. Park, S. Y. Kim, G. N. Lim, N. R. Jo, and M. H. Lee, In vitro skin permeation and cellular protective effects of flavonoids isoplated from Suaeda asparagoides extracts, J. Ind. Eng. Chem., 18(2), 680 (2012). https://doi.org/10.1016/j.jiec.2011.11.126
  13. N. R. Jo, H. A. Gu, S. A. Park, S. B. Han, and S. N. Park, Cellular protective effect and liposome formulation for enhanced transdermal delivery of isoquercitrin, J. Soc. Cosmet. Scientists Korea, 38(2), 103 (2012). https://doi.org/10.15230/SCSK.2012.38.2.103
  14. D. P. Arari, W. Bartchewsky, T. W. Dos Santos, K. Oliveira, A. Funck, J. Pedrazzoli, M. F. F. De Souza, M, J. Saad, D. H. M. Bastos, A. Gambero, P. O. Carvalho, M. L. Ribeiro, Antiobesity effects of yerba mate extract (Ilex paraguariensis) in high-fat dietinduced obese mice, Obesity, 17, 2127 (2009). https://doi.org/10.1038/oby.2009.158
  15. D. P. Arari, W. Bartchewsky, T. W. Dos Santos, K. Oliveira, C. Oliveira, E. Gotardo, J. Pedrazzoli, A. Gambero, L. F. C. Ferraz, P. O. Carvalho, M. L. Ribeiro, Anti-inflammatory effects of yerba mate extract (Ilex paraguariensis) ameliorate insulin resistance in mice with high fat diet-induced obesity, Mol Cell Endocrinol, 335(2), 110 (2011). https://doi.org/10.1016/j.mce.2011.01.003
  16. G. Gosmann, A. G. Barlette, T. Dhamer, D. P. Arcari, J. C. Santos, E. R. de Camargo, S. Acedo, A. Gambero, S. C. B. Gnoatto, and M. L. Ribeiro, Phenolic acompounds from mate (Ilex paraguariensis) inhibit adipogenesis in 3T3-L1 preadipocytes, Plant Foods Hum Nutr, 67, 156 (2012). https://doi.org/10.1007/s11130-012-0289-x
  17. E. G. Mejia, Y. S. Song, C. I. Heck, and M. Ramirez-Mares, Yerba mate tea (Ilex paraguariensis): phenolics, antioxidant capacity and in vitro inhibition of colon cancer cell proliperation, J. Funct. Foods, 2, 23 (2010). https://doi.org/10.1016/j.jff.2009.12.003
  18. D. D. Miranda, D. P. Arcari, J. Pedrazzoli, P. D. O. Carvalho, S. M. Cerutti, D. H. Bastos, and M. L. Ribeiro, Protective effects of mate tea (Ilex paraguariensis) on $H_2O_2$-induced DNA damage and DNA repair in mice, Mutagenesis, 23(4), 261 (2008). https://doi.org/10.1093/mutage/gen011
  19. R. L. Matsumoto, D. H. Bastos, S. Mendonca, V. S. Nunes, W. Bartchewsky Jr, M. L. Ribeiro, and P. de Oliveira Carvalho, Effects of mate tea (Ilex paraguariensis) ingestion on mRNA expression of antioxidant enzymes, lipid peroxidation, and total antioxidant status in healthy young women, J. Agricult. Food Chem., 57(5), 1775 (2009). https://doi.org/10.1021/jf803096g
  20. R. Harris, E. Lecumberri, I. Mateos-Aparicio, M. Mengibar, and A. Heras, Chitosan nanoparticles and microspheres for the encapsulation of natural antioxidants extracted from Ilex paraguariensis, Carbohydr. Polym., 84(2), 803 (2011). https://doi.org/10.1016/j.carbpol.2010.07.003
  21. H. J. Yang, B. R. Won, Y. J. Lim, S. K. Yoon, D. H. Ji, J. Y. Choi, S. J. Han, C. W. Lee, and S. N. Park, Antioxidative activity, component analysis, and anti-elastase effect of Aspalathus linearis extract, J. Soc. Cosmet. Scientists Korea, 33(4), 251 (2007).