• Title/Summary/Keyword: Transfer integral

Search Result 227, Processing Time 0.027 seconds

A Study on Finned Tube Used in Turbo Refrigerator(III) -for Pressure Drop- (터보 냉동기용 핀 튜브에 관한 연구 (III) -압력 손실에 관하여-)

  • Han, Kyu-Il;Kim, Si-Young;Cho, Dong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.6 no.1
    • /
    • pp.58-76
    • /
    • 1994
  • Heat transfer and pressure drop measurements are made on low integral-fin tubes in turbulent water flow condition. The integral-fin tubes investigated in this paper are nominally 19mm in diameter. Eight tubes have been used with trapezoidally shaped integral-fins having fin density from 748 to 1654 fpm and 10, 30 grooves. Plain tube having same diameter as finned tube is also tested for comparison. Experiments are carried out using R-11 as working fluid. The refrigerant condensates at a saturation state of $30^{\circ}C$ on the outside tube surface cooled by coolant. The amount of noncondensable gases present in the test loop is reduced to a negligible value by repeated purging. For a given heat input to the boiler and given cooling water flow rate, all test data are taken on steady state. The heat transfer loop is used for testing single long tubes and cooling water is pumped from a storage tank through filters and flowmeters to the horizontal test section where it is heated by steam condensing on the outside of the tube. The pressure drop across the test section is measured by means of pressure gauge and manometer. Each tube tested is cleaned with sodium dichromate pickling solution and well rinsed with water prior to installation in the test section. The results obtained in this study is as follows : 1. Based on inside diameter and nominal inside area, heat transfer of finned tube is enhanced up to 4 times as that of a plain tube at constant Reynolds number and up to 2 times at constant pumping power. 2. Friction factors are up to 1.6~2.1 times those of plain tube. 3. At a given Reynolds number, Nusselt number decrease with increasing pitch to diameter. 4. The constant pumping power ratio for low integral-fin tubes increase directly with the effective area to the nominal area ratio, and with the effective area diameter ratio.

  • PDF

Effects of Combustor-Level High Inlet Turbulence on the Endwall Flow and Heat/Mass Transfer of a High-Turning Turbine Rotor Cascade

  • Lee, Sang-Woo;Jun, Sang-Bae;Park, Byung-Kyu;Lee, Joon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1435-1450
    • /
    • 2004
  • Experimental data are presented which describe the effects of a combustor-level high free-stream turbulence on the near-wall flow structure and heat/mass transfer on the endwall of a linear high-turning turbine rotor cascade. The end wall flow structure is visualized by employing the partial- and total-coverage oil-film technique, and heat/mass transfer rate is measured by the naphthalene sublimation method. A turbulence generator is designed to provide a highly-turbulent flow which has free-stream turbulence intensity and integral length scale of 14.7% and 80mm, respectively, at the cascade entrance. The surface flow visualizations show that the high free-stream turbulence has little effect on the attachment line, but alters the separation line noticeably. Under high free-stream turbulence, the incoming near-wall flow upstream of the adjacent separation lines collides more obliquely with the suction surface. A weaker lift-up force arising from this more oblique collision results in the narrower suction-side corner vortex area in the high turbulence case. The high free-stream turbulence enhances the heat/mass transfer in the central area of the turbine passage, but only a slight augmentation is found in the end wall regions adjacent to the leading and trailing edges. Therefore, the high free-stream turbulence makes the end wall heat load more uniform. It is also observed that the heat/mass transfers along the locus of the pressure-side leg of the leading-edge horseshoe vortex and along the suction-side corner are influenced most strongly by the high free-stream turbulence. In this study, the end wall surface is classified into seven different regions based on the local heat/mass transfer distribution, and the effects of the high free-stream turbulence on the local heat/mass transfer in each region are discussed in detail.

Numerical Model for the Analysis of Frosting Behavior (착상 거동 해석을 위한 수치적 모텔)

  • Lee, Kwan-Soo;Yang, Dong-Keun;Jhee, Sung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.3
    • /
    • pp.261-267
    • /
    • 2002
  • The integral boundary layer equation for the air side and the diffusion equation for the frost layer are numerically analyzed in order to predict the behavior of frost layer growth. The thickness and density of the frost layer obtained from the present study agree well with those of previous numerical results and experimental data with a maximum error of 13%. The characteristics of heat and mass transfer within the frost layer and the frost layer growth along the flow direction are investigated by performing numerical analysis. The effects of operating conditions on the frost layer growth are also examined.

ON THE CONVERGENCE OF INEXACT TWO-STEP NEWTON-TYPE METHODS USING RECURRENT FUNCTIONS

  • Argyros, Ioannis K.;Hilou, Said
    • East Asian mathematical journal
    • /
    • v.27 no.3
    • /
    • pp.319-337
    • /
    • 2011
  • We approximate a locally unique solution of a nonlinear equation in a Banach space setting using an inexact two-step Newton-type method. It turn out that under our new idea of recurrent functions, our semilocal analysis provides tighter error bounds than before, and in many interesting cases, weaker sufficient convergence conditions. Applications including the solution of nonlinear Chandrasekhar-type integral equations appearing in radiative transfer and two point boundary value problems are also provided in this study.

Effects of Radiation on Conjugate Natural Convection from a Vertical Plate Fin (수직 평판휜으로부터의 복합자연대류에 미치는 복사효과)

  • 김경훈;김세웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.382-390
    • /
    • 1992
  • The problem of natural convection from a vertical fin is solved by coupling the thermal diffusion equation in the fin to the constitutive equations of the ambient medium involving the radiation of the medium. The analysis is accomplished by employing an integral method. The governing equations for the problem are solved by shooting method based on the Runge-Kutta Scheme at Pr= 0.7. For the range of values of the fin parameter and the radiation-conduction parameter in the analysis, the numerical results show that the radiation effects play an important role in the heat transfer and enhance the heat transfer.

Integral Controller Design for Time-Delay Plants Using a Simplified Predictor

  • Ishihara, Tadashi;Wu, Jingwei
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.90.2-90
    • /
    • 2002
  • A new integral controller is proposed for time-delay plants. The proposed controller has Davison type structure and utilizes a simplified state predictor instead of the optimal state predictor for the extended system. The simplified predictor is introduced by a trick similar to that used in the Smith predictor. As a systematic method for designing the proposed controller, the application of the loop transfer recovery (LTR) technique is considered. For the plant input side and the output side, explicit representations of the sensitivity matrices achieved by enforcing the formal LTR procedure using Riccati equations are obtained. A numerical example is presented to compare the asymptotic...

  • PDF

Study on Film-Boiling Heat Transfer of Subcooled Turbulent Liquid Film Flow on Horizontal Plate (수평 과냉 . 난류액막류의 막비등 열전달에 관한 연구)

  • 김영찬;서태원
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.9
    • /
    • pp.835-842
    • /
    • 2000
  • Film boiling heat transfer of the subcooled turbulent liquid film flow on a horizontal plate was investigated by theoretical and experimental studies. In the theoretical analysis, by solving the integral energy and momentum equations analytically, some generalized expressions for Nusselt number was deduced. Next, by comparing the deduced equations with the experimental data on the turbulent film boiling heat transfer of the subcooled thin liquid film flow, the semi-empirical relation between the Nusselt number based on the modified heat transfer coefficient and the Reynolds number was obtained. The correlating equation was very similar to that of the turbulent heat transfer in a single phase flow, and it was found that the heat transfer was dissipated to increase the liquid temperature.

  • PDF

Steam generator performance improvements for integral small modular reactors

  • Ilyas, Muhammad;Aydogan, Fatih
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1669-1679
    • /
    • 2017
  • Background: Steam generator (SG) is one of the significant components in the nuclear steam supply system. A variety of SGs have been designed and used in nuclear reactor systems. Every SG has advantages and disadvantages. A brief account of some of the existing SG designs is presented in this study. A high surface to volume ratio of a SG is required in small modular reactors to occupy the least space. In this paper, performance improvement for SGs of integral small modular reactor is proposed. Aims/Methods: For this purpose, cross-grooved microfins have been incorporated on the inner surface of the helical tube to enhance heat transfer. The primary objective of this work is to investigate thermal-hydraulic behavior of the proposed improvements through modeling in RELAP5-3D. Results and Conclusions: The results are compared with helical-coiled SGs being used in IRIS (International Reactor Innovative and Secure). The results show that the tube length reduces up to 11.56% keeping thermal and hydraulic conditions fixed. In the case of fixed size, the steam outlet temperature increases from 590.1 K to 597.0 K and the capability of power transfer from primary to secondary also increases. However, these advantages are associated with some extra pressure drop, which has to be compensated.