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A STUDY ON THE TWISTED q-EULER POLYNOMIALS AND

TRANSFER OPERATORS†
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Abstract. In this paper, we consider twisted q-Euler polynomials and
define a p-adic q-transfer operator (see [6]). From this operator, we in-
vestigate the eigenvalues of the p-adic q-transfer operator on the space of
twisted q-Euler polynomials.
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1. Introduction

Throughout this paper, Z, Q, Zp, Qp and Cp will denote the ring of rational
integers, the field of rational numbers, the ring of p-adic integers, the field of p-
adic rational numbers and the completion of algebraic closure of Qp, respectively.

Let νp be the normalized exponential valuation of Cp such that |p |p = p−νp(p) =
1
p . Let q be regarded as either a complex number q ∈ C or a p-adic number

q ∈ Cp. If q ∈ C, we assume |q| < 1, and if q ∈ Cp, we normally assume
|1− q|p < 1. We use the notation

[x]q =
1− qx

1− q
and [x]−q =

1− (−q)x

1 + q

for all x ∈ Zp.
Let d be a fixed positive odd integer and let p be a fixed odd prime number.

We now set

X = Xd = lim←−
N

Z/dpNZ,

X∗ = ∪
0<a<fp
(a,p)=1

(a+ dpZp),
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a+ dpNZp = {x ∈ X |x ≡ a (mod dpN )},
where a ∈ Z lies in 0 ≤ a < dpN .

We say that f is a uniformly differentiable function at a point a ∈ Zp and
denote this property by f ∈ UD(Zp), if the difference quotient

Ff (x, y) =
f(x)− f(y)

x− y

has a limit f ′(a) as (x, y) → (a, a). For f ∈ UD(Zp), the fermionic p-adic
invariant q-integral of f on Zp is defined by

I−q(f) =

∫

Zp
f(x)dµ−q(x) = lim

N→∞
1

[dpN ]−q

dpN−1∑
x=0

f(x)(−q)x, (see [1-14]).

Let Tp = ∪n≥0Cpn = limn→∞ Cpn be the locally constant space, where Cpn =

{w|wpn

= 1} is the cyclic group of order of pn. For w ∈ Tp, φw : Zp → Cp is
the locally constant function x 7→ wx (cf. [2-4]). In [14], Kim et al defined the
twisted q-Euler polynomials by using p-adic q-integral on Zp as follows:

E(h)
n,w(x, q) =

∫

Zp
q(h−1)ywy[x+ y]nq dµ−q(y), (1)

where w ∈ Tp and h ∈ Z and n ∈ N.
We note that the transfer operator encodes information about an iterated map

and is frequently used to study the behavior of dynamical systems, statistical
mechanics, quantum chaos and fractals. The transfer operator is defined as an
operator L acting on the space of functions φ : X → C as

(Lφ)(x) =
∑

y∈φ−1(x)

g(y)φ(y)

where g : X −→ C is an auxiliary valuation function [6,15,16]. In this paper
we consider the p-adic q-transfer operator on the space of all twisted q-Euler
polynomials and investigate the eigenvalues of the p-adic q-transfer operators
related with twisted q-Euler polynomials.

2. Main results

In this section, we consider the twisted q-Euler polynomials, E
(h)
n,w(x, q) as

follows:

[2]q

∞∑
n=0

(−1)nwnq(1−h)ne[n+x]qt =

∞∑
n=0

E(h)
n,w(x, q)

tn

n!
. (2)

Note that if w = 1 and h = 1, then E
(1)
n,1(x, q) = En(x, q) is called q-Euler

polynomial. From (1), we derive

E(h)
n,w(x, q) =

[2]q
(1− q)n

n∑

j=0

(
n

j

)
(−1)jqxj

1

1 + qh+jw
, (3)
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where E
(h)
n,w(x, q) are twisted q-Euler polynomials. By (1), we see that

E(h)
n,w(x, q)

=

∫

Zp
q(h−1)ywy[x+ y]nq dµ−q(y)

= lim
N→∞

1

[dpN ]−q

dpN−1∑

k=0

q(h−1)kwk[x+ k]nq (−q)k

= lim
N→∞

1

[d]−q

1

[pN ]−qd

d−1∑

i=0

pN−1∑

k=0

wi+dk[x+ i+ dk]nq (−q)h(i+dk)(−1)i+k

=
[d]nq
[d]−q

d−1∑

i=0

(−1)iqhiwi lim
N→∞

1

[pN ]−qd

pN−1∑

k=0

wdk

[
x+ i

d
+ k

]n

qd
(−qdh)k

=
[d]nq
[d]−q

d−1∑

i=0

(−1)iqhiwi

∫

Zp
qd(h−1)y(wd)y

[
x+ i

d
+ y

]n

qd
dµ−qd(y). (4)

Now we define p-adic q-transfer operator as follows:

(Lp,qf)(x, q) =
1

[d]−q

d−1∑

i=0

(−q)if

(
x+ i

d
: qd

)
. (5)

If we take f(x, q) = E
(h)
n,w(x, q), then we have

(Lp,qE
(h)
n,w)(x, q)

=
1

[d]−q

d−1∑

i=0

(−q)iE(h)
n,w

(
x+ i

d
: qd

)

=
1

[d]nq

[d]nq
[d]−q

d−1∑

i=0

(−q)i
∫

Zp
qd(h−1)ywy

[
x+ k

d
+ y

]n

qd
dµ−qd(y). (6)

By (3) and (5), we have

(Lp,qE
(h)
n,w)(x, q) =

1

[d]nq
E(h)

n,w(x, q). (7)

Therefore we obtain the following theorem.

Theorem 2.1. For w ∈ Tp and n, h ∈ Z+, the eigenvalues of the p-adic q-
transfer operator Lp,q related with twisted q-Euler polynomials are 1

[d]nq
. That

is,

(Lp,qE
(h)
n,w)(x, q) =

1
[d]nq

E
(h)
n,w(x, q).

Remark 2.1. In the spacial case w = 1 and h = 1, the eigenvalues of the p-adic

q-transfer operator Lp,q related with q-Euler polynomials E
(1)
n,1(x, q) = En(x, q)

are 1
[d]nq

(see [2]).
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Remark 2.2. We consider the twisted q-Genocchi polynomials, G
(h)
n,w(x, q) as

follows (see [8]):

t[2]q

∞∑
n=0

(−1)nwnq(1−h)ne[n+x]qt =

∞∑
n=0

G(h)
n,w(x, q)

tn

n!
. (8)

Note that if w = 1 and h = 1, then G
(1)
n,1(x, q) = Gn(x, q) is called q-Genocchi

polynomial. By Theorem 5 in [8], we can get

G(h)
n,w(x, q) = nE(h)

n,w(x, q), (9)

where E
(h)
n,w(x, q) are twisted q-Euler polynomials. Thus the eigenvalues of

the p-adic q-transfer operator Lp,q related with twisted q-genocchi polynomi-

als G
(h)
n,w(x, q) are

n
[d]nq

.
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