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ON THE CONVERGENCE OF

INEXACT TWO-STEP NEWTON-TYPE METHODS

USING RECURRENT FUNCTIONS

Ioannis K. Argyros and Säıd Hilout

Abstract. We approximate a locally unique solution of a nonlinear equa-

tion in a Banach space setting using an inexact two–step Newton–type
method. It turn out that under our new idea of recurrent functions,

our semilocal analysis provides tighter error bounds than before, and in

many interesting cases, weaker sufficient convergence conditions. Appli-
cations including the solution of nonlinear Chandrasekhar–type integral

equations appearing in radiative transfer and two point boundary value
problems are also provided in this study.

1. Introduction

In this study we are concerned with the problem of approximating a locally
unique solution x? of equation

F (x) = 0, (1.1)

where F is a Fréchet–differentiable operator defined on a convex subset D of a
Banach space X with values in a Banach space Y.

The field of computational sciences has seen a considerable development in
mathematics, engineering sciences, and economic equilibrium theory. For ex-
ample, dynamic systems are mathematically modeled by difference or differen-
tial equations, and their solutions usually represent the states of the systems.
For the sake of simplicity, assume that a time–invariant system is driven by
the equation ẋ = T (x), for some suitable operator T , where x is the state.
Then the equilibrium states are determined by solving equation (1.1). Similar
equations are used in the case of discrete systems. The unknowns of engineer-
ing equations can be functions (difference, differential, and integral equations),
vectors (systems of linear or nonlinear algebraic equations), or real or complex
numbers (single algebraic equations with single unknowns). Except in special
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cases, the most commonly used solution methods are iterative–when starting
from one or several initial approximations a sequence is constructed that con-
verges to a solution of the equation. Iteration methods are also applied for
solving optimization problems. In such cases, the iteration sequences converge
to an optimal solution of the problem at hand. Since all of these methods
have the same recursive structure, they can be introduced and discussed in
a general framework. We note that in computational sciences, the practice of
numerical analysis for finding such solutions is essentially connected to variants
of Newton’s method.

In [2], [3], [6], we introduced the inexact two–step Newton–type method
(ITSNTM):

yn = xn − F ′(xn)−1 F (xn),
xn+1 = yn − zn, (n ≥ 0), (x0 ∈ D)

(1.2)

to generate a sequence {xn} approximating x?. Here, F ′(x) ∈ L(X ,Y) (x ∈
D) the space of bounded linear operators from X into Y, and {zn} is a null
predetermined sequence in X depending on {xn}, and earlier to {xn} iterates.
If zn = 0, we obtain Newton’s method whereas if zn = F ′(yn)−1 F (yn), we
obtain the two–step Newton method. Many other choices of {zn} were given in
[2], [3], [6]. Several authors have also examined the convergence for (ITSNTM)
but for special choices of sequences {zn} [1]–[33].

Using a Kantorovich–type approach, we provided a semilocal convergence
analysis for (ITSNTM) under general conditions on the operators involved [2]–
[4], [6], [10]–[12]. Relevant work can be found [1], [5], [7]–[9], [13]–[33].

In this study we shall expand the applicability of (ITSNTM). The main hy-
pothesis in all studies involving inexact Newton methods (INM) is the Lipschitz
condition

‖ F ′(x0)−1 (F ′(x)− F ′(y)) ‖≤ L ‖ x− y ‖ for all x, y ∈ D, (1.3)

where L > 0, and F ′(x0)−1 ∈ L(Y,X ) (x0 ∈ D). Let x0 ∈ U(x0, 1/L) the
open ball with center x0 and of radius 1/L. Then, by the Banach Lemma on
invertible operators [6] (see also (2.36)), we obtain the estimate

‖ F ′(x)−1 F ′(x0) ‖≤ 1

1− L ‖ x− x0 ‖
(1.4)

for all x ∈ U(x0, 1/L).
Estimate (1.4) is used by the Kantorovich approach to construct the majoriz-

ing sequence for (INM). Howeover, the upper bound on the norm ‖ F ′(x)−1

F ′(x0) ‖ can be improved. Indeed, in view of (1.3) there exists L0 > 0 such
that

‖ F ′(x0)−1 (F ′(x)− F ′(x0)) ‖≤ L0 ‖ x− x0 ‖ for all x ∈ U(x0, 1/L0), (1.5)
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leading to the corresponding to (1.4) estimate

‖ F ′(x)−1 F ′(x0) ‖≤ 1

1− L0 ‖ x− x0 ‖
(1.6)

for all x ∈ U(x0, 1/L0).

Note that in general
L0 ≤ L (1.7)

holds, and
L

L0
can be arbitrarily large (see, Section 3). In the case L0 < L,

the upper bound of ‖ F ′(x)−1 F ′(x0) ‖ in (1.6) is tighter than in (1.4). In
our approach, we use estimate (1.6) instead (1.4) to construct a more precise
majorizing sequence for (INM) than in the earlier works (using (1.4)). This is
our new idea. Then utilizing our new concept of recurrent functions instead of
the less flexible Kantorovich analysis (which cannot use L0 instead of L), we
provide a new semilocal convergence analysis for (ITSNTM) with the following
advantages over earlier works for zn = 0 or not:

Tighter than before error bounds on the distances ‖ xn+1−xn ‖ (n ≥ 0),
and at least as tight on ‖ xn−x? ‖ (under the same or weaker sufficient
convergence conditions).

Simply replace L by L0 at the denominator of the majorizing sequences ap-
pearing in all works using (1.3) [2]–[4], [13]–[33]. Moreover, we can show that
using the recurrent functions approach instead of the Kantorovich’s analysis,
the sufficient convergence conditions can also be weakened, and under the same
computational cost, since in practice the computation of constant L requires
that of L0. In particular for the special case of Newton’s method, our sufficient
convergence conditions provide tighter error bounds under weaker hypotheses
(see Remark 3.6) than the celebrated Kantorovich theorem for solving equa-
tions using Newton’s method [26].

The results obtained here can be extended to hold for (ITSNTM) involving
outer or generalized inverses along the works of Nashed, Chen [17], and ours
[12].

The paper is organized as follows: Section 2 contains the semilocal conver-
gence analysis of (ITSNTM), and comparison with earlier results. Section 3
contains special cases, and numerical example involving a nonlinear integral
equation of Chandrasekhar–type appearing in radiative transfer [1], [16], and
two point boundary value problems involving integral equations with a Green’s
kernel.

2. Semilocal convergence analysis of (ITSNTM)

The semilocal convergence analysis of (ITSNTM) under weak conditions is
provided in this section. First, we need the following result on majorizing
sequences for (ITSNTM).
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Lemma 2.1. Let a ≥ 0, b ≥ 0, c > 0, L0 > 0, L > 0, and η ≥ 0 be given
constants.

Define constants α, β, γ, and δ by

α =
2L (1 + a2 η2b)

L (1 + a2 η2b) +
√

(L (1 + a2 η2b))2 + 8L0 L (1 + a) (1 + a2 η2b)
, (2.1)

β = 2L0 (1 + a ηb) η α2 +

(
(L+ 2L0) η + La2 η1+2 b + 2L0 a η

1+b

)
α

+2 a c ηb,
(2.2)

γ = La2 η1+2b + (L+ 2αL0) η + 2 a c ηb + 2αL0 a η
1+b, (2.3)

δ = max {β, γ}, (2.4)

and scalar sequences {sn}, {tn} by

t0 = 0, s0 = η, tn+1 = sn + a (sn − tn)1+b,

sn+1 = tn+1 +
L (tn+1 − sn)2 + L (sn − tn)2 + 2 c (tn+1 − sn)

2 (1− L0 tn+1)
.

(2.5)

Assume:

δ ≤ 2α. (2.6)

Then, scalar sequence {sn} (n ≥ 0) is increasing, bounded from above by

s?? =

(
1

1− α
+

a ηb

1− α1+b
+ α

)
η, (2.7)

and converges to its unique least upper bound s? satisfying s? ∈ [0, s??].

Moreover, the following estimates hold for all n ≥ 0:

0 ≤ sn+1 − tn+1 ≤ α (sn − tn). (2.8)

Proof. It follows from (2.1) that α ∈ (0, 1).

We shall show using induction on the integer k:

0 ≤ La2 (sk − tk)1+2b + L (sk − tk) + 2 a c(sk − tk)b

1− L0 tk+1
≤ 2α. (2.9)

Estimate (2.8) will then follow from (2.5), and (2.9). Using the definition of
γ, (2.4), and (2.6), we conclude that (2.8) and (2.9) hold for k = 0.
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Let us assume (2.8), and (2.9) hold for all n ≤ k. We have in turn:

tk+1 = sk + a (sk − tk)1+b

≤ tk + αk η + a (sk − tk)1+b

≤ sk−1 + a (sk−1 − tk−1)1+b + αk η + a (sk − tk)1+b

≤ αk−1 η + sk−2 + a (sk−2 − tk−2)1+b + a (sk−1 − tk−1)1+b + αk η
+a (sk − tk)1+b

≤ s1 + (α2 + α3 + · · ·+ αk) η + a ((s1 − t1)1+b + · · ·+ (sk − tk)1+b)
≤ t1 + αη + (α2 + α3 + · · ·+ αk) η + a ((s1 − t1)1+b + · · ·

+(sk − tk)1+b)
≤ s0 + a (s0 − t0)1+b + (α+ α2 + · · ·+ αk) η + a ((s1 − t1)1+b

+ · · ·+ (sk − tk)1+b)
≤ η + (α+ α2 + · · ·+ αk) η + a ((s0 − t0)1+b + (s1 − t1)1+b

+ · · ·+ (sk − tk)1+b)

=
1− αk+1

1− α
η + a (η1+b + (αη)1+b + · · ·+ (αk η)1+b)

=
1− αk+1

1− α
η + a (1 + α1+b + (α1+b)2 + · · ·+ (α1+b)k) η1+b

=
1− αk+1

1− α
η + a

1− α(1+b) (k+1)

1− α1+b
η1+b

<
η

1− α
+

a

1− α1+b
η1+b < s??,

(2.10)
and

sk+1 ≤ tk+1 + α (sk − tk) ≤ η

1− α
+

a η1+b

1− α1+b
+ αk+1 η ≤ s??. (2.11)

In view of the induction hypotheses, (2.10), and (2.11), estimate (2.9) shall
be true if

L a2(αk η)1+b + Lαk η + 2 a cαk ηb+

2αL0

(
1− αk+1

1− α
η + a

1− α(1+b) (k+1)

1− α1+b
η1+b

)
− 2α ≤ 0.

(2.12)

Estimate (2.12) motivates us to introduce functions fk on [0,+∞) (k ≥ 1)
for t = α by:

fk(t) = La2 η1+2 b tk + Lη tk + 2 a c ηb+
2L0 ((1 + t+ · · ·+ tk) η + a (1 + t+ · · ·+ tk) η1+b) t− 2 t.

(2.13)
We need a relationship between two consecutive polynomials fk:

fk+1(t) = La2 η1+2 b tk+1 + Lη tk+1 + 2 a c ηb+
2L0 ((1 + t+ · · ·+ tk+1) η + a (1 + t+ · · ·+ tk+1) η1+b) t− 2 t−
La2 η1+2 b tk − Lη tk − 2 a c ηb−
2L0 ((1 + t+ · · ·+ tk) η + a (1 + t+ · · ·+ tk) η1+b) t+ 2 t+ fk(t)

= fk(t) + g(t) tk η,
(2.14)



324 IOANNIS K. ARGYROS AND SAÏD HILOUT

where,

g(t) = 2L0 (1 + a) t2 + L (1 + a2 η2b) t− L (1 + a2 η2 b). (2.15)

Note that α given by (2.1) is the unique positive zero of function g.

In view of (2.14), we have

fk(α) = f1(α) (k ≥ 1). (2.16)

Consequently, estimate (2.12) holds if

fk(α) ≤ 0 (k ≥ 1),

or (by (2.16))

f1(α) ≤ 0. (2.17)

But (2.17) holds by the choice of β, and (2.6).

Define

f∞(α) = lim
k→∞

fk(α).

Then, we get by (2.17)

f∞(α) = lim
k→∞

fk(α) ≤ 0. (2.18)

That completes the induction.

It follows that sequence {sn} is non–decreasing, bounded from above by s??,
and as such it converges to s?.

That completes the proof of Lemma 2.1. �

We shall show the main semilocal convergence result for (ITSNTM).

Theorem 2.2. Let F : D ⊆ X −→ Y be a Fréchet–differentiable operator.
Assume:

there exist x0 ∈ D, a sequence {zn} ⊆ X , and constants a ≥ 0, b ≥ 0, L0 > 0,
L > 0, η ≥ 0, s0 ≥ η, such that for all x, y ∈ D:

F ′(x0)−1 ∈ L(Y,X ), (2.19)

‖ F ′(x0)−1 F (x0) ‖≤ η, (2.20)

‖ F ′(x0)−1 (F ′(x)− F ′(x0)) ‖≤ L0 ‖ x− x0 ‖, (2.21)

‖ F ′(x0)−1 (F ′(x)− F ′(y)) ‖≤ L ‖ x− y ‖, (2.22)

‖ xn+1 − yn ‖=‖ zn ‖≤ a ‖ F ′(xn)−1 F (xn) ‖1+b, (2.23)

U(x0, s
?) = {x ∈ X : ‖ x− x0 ‖≤ s?} ⊆ D, (2.24)

and hypothesis (2.6) of Lemma 2.1 holds, where, {sn}, δ, α, s?, s?? are given
in Lemma 2.1, with

c = 1 + L0 s
??. (2.25)
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Then, sequence {yn} (n ≥ 0) generated by (ITSNTM) is well defined, re-
mains in U(x0, s

?) for all n ≥ 0, and converges to a solution x? ∈ U(x0, s
?) of

equation F (x) = 0.
Moreover, the following estimates hold:

‖ yn − xn ‖≤ sn − tn, (2.26)

‖ xn+1 − yn ‖≤ tn+1 − sn, (2.27)

‖ xn+1 − xn ‖≤ tn+1 − tn, (2.28)

‖ yn+1 − yn ‖≤ sn+1 − sn, (2.29)

‖ yn − x? ‖≤ s? − sn, (2.30)

and

‖ xn − x? ‖≤ s? − tn. (2.31)

Furthemore, if there exists R ≥ s? such that

U(x0, R) ⊆ D, (2.32)

and

L0 (s? +R) < 2, (2.33)

then x? is the unique solution of equation (1.1) in U(x0, R).

Proof. We shall use mathematical induction to show (2.26)–(2.31) hold for all
n. Estimate (2.26) holds for n = 0 by (2.5), and (2.20). We have also that
y0 ∈ U(x0, s

?), since s? ≥ η. It follows from (2.5), (2.10), and (2.11) that

t0 ≤ s0 ≤ t1 ≤ s1 ≤ s?.

We get in turn

‖ x1 − y0 ‖=‖ z0 ‖≤ a ‖ y0 − x0 ‖1+b≤ a (s0 − t0)1+b = t1 − s0,

and

‖ x1− x0 ‖≤‖ x1− y0 ‖ + ‖ y0− x0 ‖≤ t1− s0 + s0− t0 = t1− t0 ≤ s?. (2.34)

That is x1 ∈ U(x0, s
?), and (2.26), (2.27) hold for n = 0.

We suppose that (2.26), (2.27), and xk+1 ∈ U(x0, s
?) hold for all k ≤ n.

Using (2.21) for x = xk+1, we get:

‖ F ′(x0)−1 (F ′(xk+1)− F ′(x0)) ‖ ≤ L0 ‖ xk+1 − x0 ‖
≤ L0 tk+1 ≤ L0 s

? < 1 (by (2.18)).
(2.35)

It follows from (2.35), and the Banach Lemma on invertible operators [6],
[26] that F ′(xk+1)−1 exists, so that

‖ F ′(xk+1)−1 F ′(x0) ‖≤ 1

1− L0 ‖ xk+1 − x0 ‖
≤ 1

1− L0 tk+1
. (2.36)
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In view of (ITSNTM), we obtain the approximation:

F (xk+1) = (F (xk+1)− F (yk)− F ′(yk) (xk+1 − yk))
+(F (yk) + F ′(yk) (xk+1 − yk))

=

∫ 1

0

(F ′(yk + θ (xk+1 − yk))− F ′(yk)) (xk+1 − yk) dθ

+(F (yk) + F ′(yk) (xk+1 − yk))

=

∫ 1

0

(F ′(yk + θ (xk+1 − yk))− F ′(yk)) (xk+1 − yk) dθ

+(F (yk)− F (xk)− F ′(xk) (yk − xk))
+F ′(yk) (xk+1 − yk).

(2.37)

Using (2.21), we get

‖ F ′(x0)−1 F ′(yk) ‖
= ‖ F ′(x0)−1 (F ′(yk)− F ′(x0)) + F ′(x0)−1 F ′(x0) ‖
≤ ‖ F ′(x0)−1 F ′(x0) ‖ + ‖ F ′(x0)−1 (F ′(yk)− F ′(x0)) ‖
≤ L0 ‖ yk − x0 ‖ +1
≤ 1 + L0 sk
≤ 1 + L0 s

??

= c.

(2.38)

Moreover, by (2.22), (2.37), and (2.38), we have in turn:

‖ F ′(x0)−1 F (xk+1) ‖

≤ ‖
∫ 1

0

F ′(x0)−1 (F ′(yk + θ (xk+1 − yk))− F ′(yk)) (xk+1 − yk) ‖ dθ

+ ‖
∫ 1

0

F ′(x0)−1 (F ′(xk + θ (yk − xk))− F ′(xk)) (yk − xk) ‖ dθ

+ ‖ F ′(x0)−1 F ′(yk) (xk+1 − yk) ‖

≤ L

2
‖ xk+1 − yk ‖2 +

L

2
‖ yk − xk ‖2 + ‖ F ′(x0)−1 F ′(yk) ‖ ‖ xk+1 − yk ‖

≤ L

2
(tk+1 − sk)2 +

L

2
(sk − tk)2 + (1 + L0 sk) (tk+1 − sk).

(2.39)
Furthemore, by (ITSNTM), (2.36), and (2.39), we get:

‖ yk+1 − xk+1 ‖ = ‖ (F ′(xk+1)−1 F ′(x0)) (F ′(x0)−1 F (xk+1)) ‖
≤ ‖ F ′(xk+1)−1 F ′(x0) ‖ ‖ F ′(x0)−1 F (xk+1) ‖

≤ L (tk+1 − sk)2 + L (sk − tk)2 + 2 (1 + L0 sk) (tk+1 − sk)

2 (1− L0 tk+1)

=
L (tk+1 − sk)2 + L (sk − tk)2 + 2 c (tk+1 − sk)

2 (1− L0 tk+1)
= sk+1 − tk+1,

(2.40)
which shows (2.26) for all n.
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We also have:

‖ xk+1 − yk ‖=‖ zk ‖ ≤ a ‖ yk − xk ‖1+b

≤ a (sk − tk)1+b = tk+1 − sk,
(2.41)

so,
‖ xk+1 − xk ‖ ≤ ‖ xk+1 − yk ‖ + ‖ yk − xk ‖

≤ tk+1 − sk + sk − tk = tk+1 − tk.
(2.42)

‖ yk+1 − yk ‖ ≤ ‖ yk+1 − xk+1 ‖ + ‖ xk+1 − yk ‖
≤ sk+1 − tk+1 + tk+1 − sk = sk+1 − sk,

(2.43)

‖ xk+1 − x0 ‖≤
k+1∑
i=1

‖ xi − xi−1 ‖≤
k+1∑
i=1

(ti − ti−1) = tk+1 ≤ s?,

and
‖ yk+1 − x0 ‖ ≤ ‖ yk+1 − xk+1 ‖ + ‖ xk+1 − x0 ‖

≤ sk+1 − tk+1 + tk+1 − t0 = sk+1 ≤ s?

which complete the induction.

In view of Lemma 2.1, sequence {sn} is Cauchy. It then follows from (2.26)–
(2.29) that {yn} (n ≥ 0) is a Cauchy sequence too in a Banach space X , and
as such it converges to some x? ∈ U(x0, s

?) (since U(x0, s
?) is a closed set).

By letting k −→∞ in (2.39), and noticing that sk ≤ s??, we obtain F (x?) =
0. Estimates (2.30), and (2.31) follow from (2.26)–(2.29) by using standard
majorization techniques [6], [10].

Finally, to show the uniqueness part, let y? ∈ U(x0, R) be a solution of
F (x) = 0, and set

M =

∫ 1

0

F ′(y? + θ (x? − y?)) dθ. (2.44)

Using (2.21), (2.32), and (2.33), we obtain in turns in (2.35):

‖ F ′(x0)−1 (M− F ′(x0)) ‖ ≤ L0

∫ 1

0

‖ y? + θ (x? − y?)− x0 ‖ dθ

≤ L0

∫ 1

0

(θ ‖ x? − x0 ‖ +(1− θ) ‖ y? − x0 ‖) dθ

≤ L0

2
(s? +R) < 1.

(2.45)
It follows from (2.45), and the Banach Lemma on invertible operators that

M−1 exists. By (2.44), and the identity

0 = F (x?)− F (y?) =M (x? − y?), (2.46)

we conclude

x? = y?.

That completes the proof of Theorem 2.2. �
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We shall now provide more error estimates.

Proposition 2.3. Under the hypotheses of Theorem 2.2, the following esti-
mates hold

‖ yn − xn ‖≤‖ xn − x? ‖ +
L ‖ xn − x? ‖2

2 (1− L0 ‖ xn − x0 ‖)
, (2.47)

and

‖ xn+1 − x? ‖≤ µn, (2.48)

where,

µn =
1

2

L ‖ xn+1−yn ‖2 +L ‖ yn−xn ‖2 +2 (1+L0 ‖ yn−x0 ‖) ‖ xn+1−yn ‖

1−L0

∫ 1

0

((1−θ) ‖ x?−x0 ‖+θ ‖ xn+1 − x0 ‖) dθ
.

Proof. Using (1.2), we obtain the identities:

yn − xn = x? − xn + F ′(xn)−1 F ′(x0)

∫ 1

0

F ′(x0)−1 (F ′(xn + θ (x? − xn))

−F ′(xn)) (x? − xn) dθ,
(2.49)

and

xn+1 − x? = (M−1n+1 F
′(x0)) (F ′(x0)−1 F (xn+1)), (2.50)

where,

Mn+1 =

∫ 1

0

F ′(x? + θ (xn+1 − x?)) dθ. (2.51)

Using (2.22), (2.36), and (2.49), we obtain:

‖ yn − xn ‖ ≤‖ x? − xn ‖

+ ‖ F ′(xn)−1 F ′(x0) ‖
∫ 1

0

‖ F ′(x0)−1 (F ′(xn + θ (x? − xn))

− F ′(xn) ‖ ‖ x? − xn ‖ dθ

≤‖ xn − x? ‖ +
L ‖ xn − x? ‖2

2 (1− L0 ‖ xn − x0 ‖)
,

which shows (2.47).

As in (2.45), we have

‖ F ′(x0)−1 (Mn+1 − F ′(x0)) ‖

≤ L0

∫ 1

0

‖ x? + θ (xn+1 − x?)− x0 ‖ dθ

≤ L0

∫ 1

0

(θ ‖ xn+1 − x0 ‖ +(1− θ) ‖ x? − x0 ‖) dθ

≤ L0 s
?

< 1.

(2.52)
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It follows from (2.52), and the Banach Lemma on invertible operators that
M−1n+1 exists, and

‖ M−1n+1 F
′(x0) ‖≤ 1

1− L0

∫ 1

0

((1− θ) ‖ x? − x0 ‖ +θ ‖ xn+1 − x0 ‖) dθ
.

(2.53)
Finally, using (2.39), (2.50), and (2.53), we get

‖ xn+1 − x? ‖≤‖ M−1n+1 F
′(x0) ‖ ‖ F ′(x0)−1 F (xn+1) ‖≤ µn,

which shows (2.48).
That completes the proof of Proposition 2.3. �

Remark 2.4. (a) Note that s?? given in closed form by (2.7) can replace s?

in condition (2.24).
(b) If we assume

‖ F ′(x0)−1 F ′(x) ‖≤ c0, for all x ∈ D (2.54)

then, in view of (2.38), c0 can replace c in all the results above.
(c) It follows from (2.39) that tighter than {sn} majorizing sequence {sn}

given by

t0 = 0, s0 = η, tn+1 = sn + a (sn − tn)1+b,

sn+1 = tn+1 +
L (tn+1 − sn)2 + L (sn − tn)2 + 2 (1 + L0 sn) (tn+1 − sn)

2 (1− L0 tn+1)
(2.55)

can be used in Theorem 2.2.
(d) The sufficient convergence conditions (see e.g. (2.6)) introduced here

are based on our new idea of recurrent functions, and they differ from by the
corresponding ones given us in [2], [3], where a Kantorovich–type analysis was
used. In practice, we will test these conditions, and apply the ones that are
satisfied (if any). In the case that both set of conditions are satisfied, we shall
use the error bounds of this paper, since they are always at least as tight, since
(1.7) holds.

(e) Note that in case (for special choices of sequence {zn}), (see also the in-
troduction, Lemma 3.4, Theorem 3.5, and Remark 3.6), our method (ITSNTM)
reduces to earlier ones, then we proceed as in (d) above.

(f) According to the proof of Theorem 2.2, sequence {zn} does not have to
be included in D or U(x0, s

?). An interesting choice for zn seems to be

zn = ε (yn − xn), ε ≥ 0.
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3. Special cases and applications

We provide numerical examples and special cases.

Example 3.1. Case zn 6= 0. Let X = Y = C[0, 1], D = U(1, 1), and define
operator P on D by

P(x)(s) = λx(s)

∫ 1

0

K(s, t)x(t) dt− x(s) + y(s). (3.1)

Note that every zero of P satisfies the equation

x(s) = y(s) + λx(s)

∫ 1

0

K(s, t)x(t) dt. (3.2)

Nonlinear integral equations of the form (3.2) are considered Chandrasekhar–
type equations [1], [6], [16], [19]–[21], and they arise in the theories of radiative
transfer, neutron transport, and in the kinetic theory of gasses [6], [16].

Here, we assume that λ is a real number called the ”albedo” for scattering,
and the kernel K(s, t) is a continuous function in two variables s, t, satisfying

(i) 0 < K(s, t) < 1,
(ii) K(s, t) +K(t, s) = 1

for all (s, t) ∈ [0, 1]2.

The space X is equipped with the max–norm. That is,

‖ x ‖= max
0≤s≤1

|x(s)|.

Let us assume for simplicity that

K(s, t) =
s

s+ t
for all (s, t) ∈ [0, 1]2. (3.3)

Choose x0(s) = y(s) = 1 for all s ∈ [0, 1], λ = .25, and

zn =
1

100
F ′′(xn) (yn − xn)2, (3.4)

where F ′′ is the second Fréchet–derivative of operator F [6].

Note that function K given by (3.3) satisfies conditions (i) and (ii).

Then, using (2.19)–(2.25), (2.1)–(2.4), and (2.6), we obtain

‖ P ′(x0(s))−1 ‖≤ 1.53039421,

L0 = L = 2 |λ| max
0≤s≤1

∣∣∣∣ ∫ 1

0

s

s+ t
dt

∣∣∣∣ ‖ P ′(x0(s))−1 ‖

= 2 |λ| ln 2 ‖ P ′(x0(s))−1 ‖
= .530394215,

η =‖ P ′(x0(s))−1 P(x0(s)) ‖≥ |λ| ln 2 ‖ P ′(x0(s))−1 ‖= .265197107,

b = 1, a =
1

100
‖ F ′′(x) ‖= 2 ln 2 |λ|

100
= .0034657359, for all x ∈ D,
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α = .499423497, s?? = .663453567, c = 1.351891934,

β = .283591402, γ = δ = .283770148,

and
δ = .283770148 ≤ 2 α = .998846994.

Moreover, with s?? replacing s? in (2.33), we get

s?? ≤ R <
2

L0
− s?? = 3.107326625. (3.5)

That is all hypotheses of Theorem 2.2 are satisfied. Hence, sequence {xn}
converges to a unique solution x? in D (by (3.5)) of equation (3.2), so that error
estimates (2.26)–(2.31) hold with {sn}, s? or {sn}, s? = lim

n→∞
sn, respectively.

Example 3.2. Let X = Y = C[0, 1], equipped with the same norm as Example
3.1. Consider the following nonlinear boundary value problem [6]{

u′′ = −u3 − γ u2
u(0) = 0, u(1) = 1.

It is well known that this problem can be formulated as the integral equation

u(s) = s+

∫ 1

0

Q(s, t) (u3(t) + γ u2(t)) dt (3.6)

where, Q is the Green function:

Q(s, t) =

{
t (1− s), t ≤ s
s (1− t), s < t.

We observe that

max
0≤s≤1

∫ 1

0

|Q(s, t)| dt =
1

8
.

Then problem (3.6) is in the form (1.1), where, F : D −→ Y is defined as

[F (x)] (s) = x(s)− s−
∫ 1

0

Q(s, t) (x3(t) + γ x2(t)) dt.

It is easy to verify that the Fréchet derivative of F is defined in the form

[F ′(x)v] (s) = v(s)−
∫ 1

0

Q(s, t) (3 x2(t) + 2 γ x(t)) v(t) dt.

If we set u0(s) = s, and D = U(u0, R), then since ‖ u0 ‖= 1, it is easy to verify
that U(u0, R) ⊂ U(0, R+ 1). It follows that 2 γ < 5, then

‖ I − F ′(u0) ‖≤ 3 ‖ u0 ‖2 +2 γ ‖ u0 ‖
8

=
3 + 2 γ

8
,

‖ F ′(u0)−1 ‖≤ 1

1− 3 + 2 γ

8

=
8

5− 2 γ
,

‖ F (u0) ‖≤ ‖ u0 ‖
3 +γ ‖ u0 ‖2

8
=

1 + γ

8
,
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and

‖ F (u0)−1 F (u0) ‖≤ 1 + γ

5− 2 γ
.

On the other hand, for x, y ∈ D, we have

[(F ′(x)−F ′(y))v] (s) = −
∫ 1

0

Q(s, t) (3 x2(t)−3 y2(t)+2 γ (x(t)−y(t))) v(t) dt.

Consequently (see [6])

‖ F ′(x)− F ′(y) ‖ ≤ γ + 6 R+ 3

4
‖ x− y ‖,

‖ F ′(x)− F ′(u0) ‖ ≤ 2 γ + 3 R+ 6

8
‖ x− u0 ‖ .

Therefore, conditions of Theorem 2.2 hold with

η =
1 + γ

5− 2 γ
, L =

γ + 6 R+ 3

4
, L0 =

2 γ + 3 R+ 6

8
.

Note that L0 < L.

Application 3.3. Case zn = 0 (Newton’s method). In this case, we set
a = 0 to obtain

xn+1 = xn − F ′(xn)−1 F (xn) (n ≥ 0), (x0 ∈ D), (3.7)

and

t0 = 0, t1 = η, tn+1 = tn +
L (tn+1 − tn)2

2 (1− L0 tn+1)
, (n ≥ 0). (3.8)

Lemma 2.1, and Theorem 2.2 reduce to Lemma 3.4 and Theorem 3.5 respec-
tively:

Lemma 3.4. [9] Assume there exist constants L0 ≥ 0, L ≥ 0, with L0 ≤ L,
and η ≥ 0, such that:

hA = L η


≤ 1

2
if L0 6= 0

<
1

2
if L0 = 0,

(3.9)

where,

L =
1

8

(
L+ 4 L0 +

√
L2 + 8 L0 L

)
.

Then, sequence {tk} (k ≥ 0) given by (3.8) is well defined, nondecreasing,
bounded above by t??, and converges to its unique least upper bound t? ∈ [0, t??],
where

t?? =
2 η

2− δ
,

1 ≤ δ =
4 L

L+
√
L2 + 8 L0 L

< 2 for L0 6= 0.
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Moreover, the following estimates hold:

L0 t
? ≤ 1,

0 ≤ tk+1 − tk ≤
δ

2
(tk − tk−1) ≤ · · · ≤

(
δ

2

)k

η, (k ≥ 1),

tk+1 − tk ≤
(
δ

2

)k

(2 hA)2
k−1 η, (k ≥ 0),

0 ≤ t? − tk ≤
(
δ

2

)k
(2 hA)2

k−1 η

1− (2 hA)2k
, (2 hA < 1), (k ≥ 0).

Theorem 3.5. ([13]) Let F : D ⊆ X −→ Y be a Fréchet–differentiable opera-
tor. Assume there exist x0 ∈ D, and constants L0 > 0, L > 0, η ≥ 0, such that
for all x, y ∈ D:

hypotheses (2.19)–(2.22) hold,

U(x0, t
?) ⊆ D,

and

hypothesis (3.9) of Lemma 3.4 holds.

Then, sequence {xn} (n ≥ 0) generated by (3.7) is well defined, remains in
U(x0, t

?) for all n ≥ 0, and converges to a solution x? ∈ U(x0, t
?) of equation

F (x) = 0.

Moreover, the following estimates hold:

‖ xn+1 − xn ‖≤ tn+1 − tn,
and

‖ xn − x? ‖≤ t? − tn,
where, {tn}, and t? are given in Lemma 3.4.

Furthemore, if there exists R ≥ t? such that

U(x0, R) ⊆ D,
and

L0 (t? +R) < 2,

then x? is the unique solution of equation (1.1) in U(x0, R).

Remark 3.6. If L0 = L, Lemma 3.4, and Theorem 3.5 reduce to the corre-
sponding ones given by Kantorovich and others [26]. Otherwise (i.e. L0 < L),
the sufficient convergence conditions are always weaker, since

hK = Lη ≤ 1

2
=⇒ hA ≤

1

2
,

and the error estimates are tighter [4]–[13].
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Example 3.7. Define the scalar function F by F (x) = c0 x+ c1 + c2 sin ec3 x,
x0 = 0, where ci, i = 0, 1, 2, 3 are given parameters. Then it can easily be seen

that for c3 large and c2 sufficiently small,
L

L0
can be arbitrarily large. That is

(3.9) may be satisfied but not the Kantorovich hypothesis.

Example 3.8. ([6]) Consider the same notations as Example 3.1. Let θ ∈ [0, 1]
be a given parameter. Consider the ”Cubic” integral equation

u(s) = u3(s) + λu(s)

∫ 1

0

K(s, t)u(t) dt+ y(s)− θ. (3.10)

Choose u0(s) = y(s) = 1 for all s ∈ [0, 1]. If we let D = U(u0, 1 − θ), and
define the operator F on D by

F (x)(s) = x3(s)− x(s) + λx(s)

∫ 1

0

K(s, t)x(t) dt+ y(s)− θ, (3.11)

for all s ∈ [0, 1], then every zero of F satisfies equation (3.10). Therefore, if we
set ξ =‖ F ′(u0)−1 ‖, then it follows from hypotheses of Theorem 2.2 that

η = ξ (|λ| ln 2 + 1− θ),

L = 2 ξ (|λ| ln 2 + 3 (2− θ)) and L0 = ξ (2 |λ| ln 2 + 3 (3− θ)).
It follows from Theorem 3.5 that if condition (3.9) holds, then problem (3.10)

has a unique solution near u0. This assumption is weaker than the one given
before using the Newton–Kantorovich hypothesis. Note also that L0 < L for
all θ ∈ [0, 1].

Example 3.9. ([6], [12]) Let X = Y = R2, be equipped with the max–norm,

x0 = (1, 1)T , U0 = {x : ‖ x− x0 ‖≤ 1− %}, % ∈
[
0,

1

2

)
, and define function F

on U0 by

F (x) = (ξ31 − %, ξ32 − %)T , x = (ξ1, ξ2)T . (3.12)

The Fréchet–derivative of operator F is given by

F ′(x) =

[
3 ξ21 0

0 3 ξ22

]
.

Using hypotheses of Theorem 3.5, we get:

η =
1

3
(1− %), L0 = 3− %, and L = 2 (2− %).

The Kantorovich condition is violated, since

2hK =
4

3
(1− %) (2− %) > 1 for all % ∈

[
0,

1

2

)
.

Hence, there is no guarantee that Newton’s method (1.2) converges to x? =
( 3
√
%, 3
√
%)T , starting at x0.
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However, our condition (3.9) is true for all % ∈ I =

[
.450339002,

1

2

)
. Hence,

the conclusions of our Theorem 3.5 can apply to solve equation (3.12) for all
% ∈ I.

Remark 3.10. The results obtained in this study extend in the case

F (x) +G(x) = 0, (3.13)

where F is as in the introduction, and G : D −→ Y is a continuous operator,
satisfying

‖ F (x0)−1 (G(x)−G(y)) ‖≤ N ‖ x− y ‖, for all (x, y) ∈ D2. (3.14)

Condition (3.14) implies the continuity but not necessarily the differentia-
bility of operator G. The iteration corresponding to (3.13) is given by

yn = xn − F ′(xn)−1 (F (xn) +G(xn)) (n ≥ 0), (x0 ∈ D),
xn+1 = yn − zn.

(3.15)

The identity corresponding to (2.37) is given by

F (xk+1) +G(xk+1) = (F (xk+1)− F (yk)− F ′(yk) (xk+1 − yk))

+ F (yk) + F ′(yk) (xk+1 − yk) +G(xk+1)

= (F (xk+1)− F (yk)− F ′(yk) (xk+1 − yk))

+ (F (yk)− F (xk)− F ′(xk) (yk − xk))−G(xk)

+G(xk+1) + F ′(yk) (xk+1 − yk)

=

∫ 1

0

(F ′(yk + θ (xk+1 − yk))− F ′(yk)) (xk+1 − yk) dθ

+

∫ 1

0

(F ′(xk + θ (yk − xk))− F ′(xk)) (yk − xk) dθ

+ F ′(yk) (xk+1 − yk) +G(xk+1)−G(xk),

leading to

‖ yk+1 − xk+1 ‖≤ sk+1 − tk+1.

We have the following estimate

‖ F ′(x0)−1(F (xk+1) +G(xk+1)) ‖

≤ L

2
(tk+1 − sk)2 +

L

2
(sk − tk)2 + (1 + L0 sk) (tk+1 − sk) +N (tk+1 − tk).

But since

‖ xk+1 − xk ‖ = ‖ yk − xk + zk ‖
≤ ‖ yk − xk ‖ + ‖ zk ‖
≤ sk − tk + a (sk − tk)1+b = (1 + a (sk − tk)b) (sk − tk),
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the majorizing sequence should given by

t0 = 0, s0 = η, tn+1 = sn + a (sn − tn)1+b,

sn+1 = tn+1+
L (tn+1−sn)2+ L (sn − tn)2+2 c (tn+1 − sn) + 2N (tn+1 − tn)

2 (1− L0 tn+1)
,

whereas the term 2 a c ηb in (2.2) and (2.3) should be

2 a

(
1 + L0 s

?? +
N

aηb
(1 + a ηb)

)
ηb

if a 6= 0, and η 6= 0, and 2N if a = 0.

(similar changes for majorizing sequence {sn}). Then, with the above changes,
the conclusions of all the results obtained here hold with equation (1.1) replaced
by (3.13) (with the exception of the uniqueness part in Theorems 2.2 and 3.5).
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86962 Futuroscope Chasseneuil Cedex, France
E-mail address: said.hilout@math.univ--poitiers.fr


