• Title/Summary/Keyword: Transfer function 전달함수

Search Result 715, Processing Time 0.029 seconds

Analysis on the Characteristics of the Infra-Gravity Waves inside and outside Pohang New Harbor using a Transfer Function Model (전달함수 모형을 이용한 포항신항 내·외의 외중력파 특성 분석)

  • Cho, Hong-Yeon;Jeong, Weon Mu;Oh, Sang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.3
    • /
    • pp.131-139
    • /
    • 2014
  • Infra-gravity waves (IGWs) with a period of 1~3 minutes are a factor that directly influences the motion analysis of moored ships inside a harbor and longshore sediment transport analysis. If significant levels of IGWs from far seas are transferred to a harbor and amplified, they may cause downtime of large ships and induce economic loss. In this study, transfer characteristics of the IGWs intruding from outside to inside Pohang New Harbor were analyzed using statistical analysis and transfer function of wave data measured at both outside and inside the harbor for around 5 years. Transfer characteristic analysis was limited to events where IGWs had wave heights above 0.1 m. The wave height distribution of inside the harbor was similar to that of outside the harbor, while the wave period variance of the former was larger than that of the latter. The parameters of the transfer function was optimally estimated according to each event. The estimated average RMS error of the wave height inside the harbor was around 0.013 m. The estimated parameters had a strong correlation with the linear combination information of IGW wave height, period, and direction (R = 0.95). The transfer function suggested in this study can quickly and easily estimate information on IGWs inside the harbor using IGW information predicted beforehand, and is expected to reduce damage due to unexpected restrictions on harbor usage.

On the Temporal Variability of Geomagnetic Field and Transfer Function at Icheon Observatory (이천관측소에서 측정된 지자기장 및 지자기 전달함수의 시간적 변동성)

  • Lee, Duk-Kee;Kwon, Byung-Doo;Youn, Yong-Hoon;Yang, Jun-Mo
    • Journal of the Korean earth science society
    • /
    • v.25 no.7
    • /
    • pp.604-614
    • /
    • 2004
  • Using three-components geomagnetic data from a permanent geomagnetic observatory in Icheon, we have computed the power spectrum of each geomagnetic component, amplitude, phase and estimation error of transfer function for each day in the 6 months period July 2002${\sim}$December 2002. The temporal variation of power spectrum have random appearances with repeating relative strong and weak magnitude, which is considered as solar activities. However, there is no clear long-term trend. In the case of amplitude, phase and error of transfer function, even though there are some random patterns over the periods of 1000 s and under 100 s, they seem to be comparatively stable without manifest temporal changes. Futhermore, we have estimated electrical field by assuming P$_{1}\;^{0}$ spherical harmonics and then calculated the approximated apparent resistivity for each day. As a result, the variations of resistivity depend on the temporal magnitude of spectral power in horizontal magnetic fields rather than hydrological changes in near surface.

A Study on the analysis of ship motion using system identification method (시스템 식별법을 이용한 선체운동 해석에 관한 연구)

  • Song, Jaeyoung;Yim, Jeong-Bin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.271-271
    • /
    • 2019
  • Estimating ship motion is difficult because it take place in complex environments.. Estimating ship motion is an important factor in ensuring the safety of ship, so accurate estimates are needed. Existing motion-related studies compare the apparent motion of the model acquired and the reference model by experimenting with the ship motion on a particular alignment, making it difficult to intuitively estimate the hull motion. This study introduces the concept of estimating the characteristics of ship motion as a transfer function through pole-zero interpretation and frequency response analysis by applying the method of transfer function of Linear-Time Invariant system. Ship motion analysis model using Linear-Time Invariant system is consist with 1) wave as input signal 2) ship motion as output signal 3) hull defined as black box. This model can be defined by numericalizing the ship motion as a transfer function and is expected to facilitate the characterization of the ship motion through pole-zero analysis and frequency response analysis.

  • PDF

Comparative Study on Classical Control and Modern Control via Analysis of Circuit-based Time Response (회로망 기반의 시간응답 해석에 따른 고전제어와 현대제어의 비교 연구)

  • Min, Yong-Ki
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.4
    • /
    • pp.575-584
    • /
    • 2017
  • It is suggested the circuit network to analyze the time response of control system. And it is analyzed the interrelation for classical control and modern control by the transfer function and the state equation. Without complicated integration of state transition equation, it is suggested to possible time response by combining the state transition matrix and the transfer function. A source program is coded to display the time response according to the unit-step and the sinusoidal input. Transient response is analyzed in the unit-step input and phase difference between current and voltage is analyzed in sinusoidal input. As writing the suggested contents in transient response or state-space analysis, it is improved the understanding for control engineering and ability for system design.

Experimental Verification on Motion Error Analysis Method of Hydrostatic Tables Using Transfer Function (전달함수를 이용한 유정압테이블 운동정밀도 해석법의 실험적 검증)

  • 박천흥;오윤진;이후상;홍준희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.454-458
    • /
    • 2001
  • A new model utilizing a transfer function was proposed in the previous paper for analizing motion errors of hydrostatic tables. Validity of the proposed method was theoretically verified as the calculated motion errors were compared with the results by conventional multi pad method. In this paper, relationship between form error of rail and motion errors of hydrostatic table is analized theoretically in order to comprehand so-called 'averaging effect of oil film'. Experiments on the motion errors of hydrostatic table is conducted with 3 different rails, and the results are compared with the results calculated by Transfer Function Method. The results show good agreement. From the results, it is verified that TFM is very effective to analize the motion errors of hydrostatic table.

  • PDF

The Influence of Design Factors of Sonar Acoustic Window on Transfer Function of Self Noise due to Turbulent Boundary Layer (소나 음향창의 설계 인자가 난류 유동 유기 자체 소음의 전달 함수에 미치는 영향 해석)

  • Shin, Ku-kyun;Seo, Youngsoo;Kang, Myengwhan;Jeon, Jaejin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.568-574
    • /
    • 2012
  • Turbulent boundary layer noise is already a significant contributor to sonar self noise. For developing acoustic window of sonar system to reduce self noise, a parametric study of design factors of acoustic window is presented. Distance of sensor array from acoustic window, material and damping layer are studied as design factors to influence in the characteristics of the transfer function of self noise. As the result these design factors make change the characteristics of transfer function slightly. Among design factors the location of sensor array is most important parameter in the self noise reduction.

  • PDF

Substructure Analysis of Steering System using Transfer Function Synthesis Method (전달함수합성법을 이용한 스티어링 시스템의 부분구조 해석)

  • Hong, Sung-Kyu;Kim, Do-Youn;Lee, Doo-Ho;Kim, Chan-Mook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.201-206
    • /
    • 2000
  • In this work transfer function synthesis method based on FRF data of each substructure is investigated for a complex structure composed of many substructures. Though the transfer function synthesis method has superiority to analyze the characteristics of interfaces among substructures effectively, many problems arise in the computation process, especially matrix inversion process. Due to computational problems, the error between the data obtained by test and the predictions through computations is inevitable. So in this paper, computational aspects in the transfer function synthesis method are examined through a steering system problem of passenger car. For the FBS method, frequency response functions of 3 substructures are measured experimentally. Effects of several parameters such as matrix inversion method, connection conditions between substructures and off-diagonal terms on system response are studied numerically.

  • PDF

Estimation of Pump Induced Vibration Force Using Transfer Function (전달함수를 이용한 펌프(50Hp)의 진동가진력 산정)

  • 노병철
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.157-162
    • /
    • 1998
  • Dynamic loads may arise from rotating parte of pump if they are insufficiently balanced. The magnitude of pump induced vibrations varies according to the weight, eccentricity, and unbalanced mass of pump. This is a study to estimate the pump induced vibration in time and frequency domain by transfer function. The transfer function has real and imaginary information of signals, and response function has also real and imaginary information. So the vibration force can be obtained from the response and transfer function by complex calculation. The amplitudes and components of 50Hp pump vibration force are suggested.

  • PDF

Design of controller in control system with two degrees of freedom by the normal method (정규화법에 의한 2자유도 제어계에서 제어기의 설계)

  • Ha, Hong-Gon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.1
    • /
    • pp.56-61
    • /
    • 2011
  • Many control techniques have been proposed in order to improve the control performance of the control system. The degree of freedom on control in the control system is decided by the number of the closed-loop transfer function which can adjust independently. The controller design scheme with two degrees of freedom(TDOF) is extensively used for securing the good control performance to trace a desired value and reject disturbance. In this paper, PID controller is used by controller with TDOF and the design method for control system with TDOF is proposed by the normal method. Using the coefficients of the transfer function of the plant, the transfer function of the control system is normalized by the proposed design method and the parameters of the controller are determined. The control system with the TDOF is constructed by using this method. Through the simulation results, the usefulness of the proposed algorithm is proved.

Calculation of the Transfer Function for a Liquid Rocket Engine using a Dynamic Model (액체로켓 엔진의 동특성 모델을 이용한 전달함수의 계산)

  • Park, Soon-Young;Lee, Eun-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.436-442
    • /
    • 2012
  • In the process of liquid rocket engine design, obtaining method of the dynamic characteristics of engine should be emphasized typically to determine the control logic and algorithms of the throttle valves in the propellant feed pipeline. However, determining the dynamic characteristics of an engine through the autonomous test is very hard and laborious, so that the numerical approach is prevailing. In this study, using the previously developed dynamic analysis model of the engine around the steady state, we introduced a disturbance to this model, and obtained the dynamic response in the time domain. And by applying the well-known Levy method to this temporal response, we could deduce the transfer function of that system that can give us various information of engine and can be manipulated to design the control system.

  • PDF