• Title/Summary/Keyword: Transfer Standard

Search Result 1,034, Processing Time 0.031 seconds

Effect of Electrode Design on Electrochemical Performance of Highly Loaded LiCoO2 Positive Electrode in Lithium-ion Batteries (리튬이온 이차전지용 고로딩 LiCoO2 양극의 전극설계에 따른 전기화학적 성능연구)

  • Kim, Haebeen;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.2
    • /
    • pp.47-55
    • /
    • 2020
  • Highly loaded LiCoO2 positive electrodes are prepared to construct high-energy density lithium-ion batteries, their electrochemical performances are evaluated. For the standard electrode, a loading of about 2.2 mAh/㎠ is used, and for a high-loading electrode, an electrode is manufactured with a loading level of about 4.4 mAh/㎠. The content of carbon black as electronic conducting additive, and the porosity of the electrode are configured differently to compare the effects of electron conduction and ionic conduction in the highly loaded LiCoO2 electrode. It is expected that the electrochemical performance is improved as the amount of the carbon black increases, but the specific capacity of the LiCoO2 electrode containing 7.5 weight% carbon black is rather reduced. When the conductive material is excessively provided, an increase of electrode thickness by the low content of the LiCoO2 active material in the same loading level of the electrode is predicted as a cause of polarization growth. When the electrode porosity increases, the path of ionic transport can be extended, but the electron conduction within the electrode is disadvantageous because the contact between the active material and the carbon black particles decreases. As the electrode porosity is lowered through the sufficient calendaring of the electrode, the electrochemical performance is improved because of the better contact between particles in the electrode and the reduced electrode thickness. In the electrode design for the high-loading, it is very important to construct the path of electron conduction as well as the ion transfer and to reduce the electrode thickness.

Evaluation of Image Quality for Radiographic Positioning using IEC Radiation Quality in the Digital Radiography System (디지털방사선시스템에서 IEC표준을 이용한 방사선 영상 품질의 평가)

  • An, Hyeon;Kim, Changsoo;Kim, Jung-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.7
    • /
    • pp.289-299
    • /
    • 2015
  • The purpose of this study is to evaluate and compare the quality of digital X-ray imaging system. The image quality evaluation was conducted By using Modulation transfer function indicating the quantitative resolution of the image and the noise power spectrum showing the noise characteristics. Using a IEC61267 radiation quality was applied to the geometry to be used in clinical and geometry presented in IEC62220-1 and Additional filter, grid, the clinical dose and the MTF value of edge phantom was measured. Result of the MTF corresponding to each item(Grid, Filter, SID, kVp, mAs), the clinical condition 100cm, 180cm, measurements of the spatial frequency of the MTF IEC62220-1Geometry 150cm became similarly apparent, rather spatial frequency was also the case high in clinical conditions 100cm. NPS results, as the dose(mAs) is increased, NPS showed that reduced. The image quality evaluation using IEC61267 the Radiation quality, Image quality of the video using the clinical conditions Geometry than image quality evaluation using IEC62220-1Geometry was better. It shows that MTF and NPC in IEC and clinical condition were not significantly different. In order to apply the evaluation method of image quality applied with clinical conditions rather than the future method, to be presented evaluation of IEC standard, based on the results of the image characterization studies in this paper, the methods that shows good quality of spatial resolution and decrease NPS value as the least dose, used suitable parameters for whether or not using added filter, grid, change SID and clinical quality(kVp), dose(mAs) etc should be found. then It is believed to be able to properly maintain the actual quality of the image of the digital radiographic imaging system in clinical.

The Selection of Domestically Bred Cultivars for Spray-type Chrysanthemum Transformation (스프레이 국화 형질전환을 위한 국내 육성 품종 선발)

  • Suh, Eun-Jung;Han, Bong Hee;Lee, Yeon-Hee;Lee, Seong-Kon;Hong, Joon Ki;Kim, Kyung Hwan
    • Horticultural Science & Technology
    • /
    • v.33 no.6
    • /
    • pp.947-954
    • /
    • 2015
  • To select suitable spray chrysanthemum cultivars for Agrobacterium-mediated transformation, thirty-nine (39) spray cultivars bred in the National Institutes of Korea and a standard cultivar Jinba from Japan were collected and tested for regeneration rate and Agrobacterium infection assays. MS medium with $0.5mg{\cdot}L^{-1}$ IAA and $1.0mg{\cdot}L^{-1}$ BAP was used for shoot regeneration from leaf disks and internodes. The shoot regeneration rate in leaf disks was the highest in cultivar BRM, followed by cultivars VS, WW and YTM. The cultivar JB (Jinba) used as a transformation material in previous reports ranked similarly to cultivars PK and SPP. In shoot regeneration from internodes, the shoot regeneration rate was the highest for cultivar PA, followed by cultivar WW. The infection rate of leaves and internodes of 40 chrysanthemum cultivars with agrobacterium was investigated. Cultivars WPP, YNW, VS, PP, WW, FA, PA and YMN showed the highest infection levels in leaves, whereas cultivars WPP, PA, PK and YNW had the highest infection levels in internodes. Considering all of these results, cultivars VS and WW were the most appropriate for gene transformation of chrysanthemum using leaves, while cultivar PA was for internodes.

ADVANTAGES OF USING ARTIFICIAL NEURAL NETWORKS CALIBRATION TECHNIQUES TO NEAR-INFRARED AGRICULTURAL DATA

  • Buchmann, Nils-Bo;Ian A.Cowe
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1032-1032
    • /
    • 2001
  • Artificial Neural Network (ANN) calibration techniques have been used commercially for agricultural applications since the mid-nineties. Global models, based on transmission data from 850 to 1050 nm, are used routinely to measure protein and moisture in wheat and barley and also moisture in triticale, rye, and oats. These models are currently used commercially in approx. 15 countries throughout the world. Results concerning earlier European ANN models are being published elsewhere. Some of the findings from that study will be discussed here. ANN models have also been developed for coarsely ground samples of compound feed and feed ingredients, again measured in transmission mode from 850 to 1050 nm. The performance of models for pig- and poultry feed will be discussed briefly. These models were developed from a very large data set (more than 20,000 records), and cover a very broad range of finished products. The prediction curves are linear over the entire range for protein, fat moisture, fibre, and starch (measured only on poultry feed), and accuracy is in line with the performance of smaller models based on Partial Least Squares (PLS). A simple bias adjustment is sufficient for calibration transfer across instruments. Recently, we have investigated the possible use of ANN for a different type of NIR spectrometer, based on reflectance data from 1100 to 2500 nm. In one study, based on data for protein, fat, and moisture measured on unground compound feed samples, dedicated ANN models for specific product classes (cattle feed, pig feed, broiler feed, and layers feed) gave moderately better Standard Errors of Prediction (SEP) compared to modified PLS (MPLS). However, if the four product classes were combined into one general calibration model, the performance of the ANN model deteriorated only slightly compared to the class-specific models, while the SEP values for the MPLS predictions doubled. Brix value in molasses is a measure of sugar content. Even with a huge dataset, PLS models were not sufficiently accurate for commercial use. In contrast an ANN model based on the same data improved the accuracy considerably and straightened out non-linearity in the prediction plot. The work of Mr. David Funk (GIPSA, U. S. Department of Agriculture) who has studied the influence of various types of spectral distortions on ANN- and PLS models, thereby providing comparative information on the robustness of these models towards instrument differences, will be discussed. This study was based on data from different classes of North American wheat measured in transmission from 850 to 1050 nm. The distortions studied included the effect of absorbance offset pathlength variation, presence of stray light bandwidth, and wavelength stretch and offset (either individually or combined). It was shown that a global ANN model was much less sensitive to most perturbations than class-specific GIPSA PLS calibrations. It is concluded that ANN models based on large data sets offer substantial advantages over PLS models with respect to accuracy, range of materials that can be handled by a single calibration, stability, transferability, and sensitivity to perturbations.

  • PDF

Effect of Transverse Reinforcement on the Shear Friction Capacity of Concrete Interfaces with Construction Joint (시공줄눈이 있는 콘크리트 경계면의 전단마찰 내력에 대한 보강철근의 영향)

  • Hwnag, Yong-Ha;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.555-562
    • /
    • 2016
  • The objective of the present study is to evaluate the shear transfer capacity of transverse reinforcement at the concrete interfaces with smooth construction joint. The transverse reinforcing bars were classified into two groups: V-type for the arrangement perpendicular to the interface and X-type for inclined-crossing arrangement. The transverse reinforcement ratio at the interface varied from 0.0045 to 0.0135 for V-type and 0.0064 to 0.0045 for X-type. The mechanism analysis proposed for monolithic concrete interface, derived based on the upper-bound theorem of concrete plasticity, was modified to evaluate the shear friction capacity of concrete interfaces with smooth construction joint. Test results showed that the specimens with X-type reinforcement had lower amount of relative slippage at the interface and higher shear friction capacity than the companion specimens with V-type reinforcement. This observation was independent of the unit weight of concrete. The mean and standard deviation of the ratios between the experimental shear friction strength of smooth construction joints and predictions obtained from the proposed model are 1.07 and 0.14, respectively.

Quantitative Evaluation of Image Quality using Automatic Exposure Control & Sensitivity in the Digital Chest Image (디지털 흉부영상에서 자동노출제어 및 감도변화를 이용한 영상품질의 정량적인 평가)

  • Lee, Jin-Soo;Ko, Seong-Jin;Kang, Se-Sik;Kim, Jung-Hoon;Kim, Dong-Hyun;Kim, Changsoo
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.8
    • /
    • pp.275-283
    • /
    • 2013
  • The patient radiation dose is different depending on selection of Ion chamber when taking Chest PA which using AEC. In this paper, we studied acquiring the best diagnostic images according to selection of Ion chamber on AEC mode as well as minimizing patient radiation dose. Experimental methods were selection of Ion chamber and change of sensitivity under the same conditions as Chest PA projection. At AEC mode, two upper ion chambers sensors and one lower ion chamber sensor were divided into 7 cases according to selection of on/off. after measuring five times respectively, we obtained average value and calculated exposure dose. Image assessment was done with measured Modulation Transfer Function, Peak Signal to Noise Ratio, Root Mean Square, Signal to Noise Ratio, Contrast to Noise Ratio, Mean to Standard deviation Ratio respectively. In exposure assessment results, selection of two upper chambers was the lowest. In resolution assessment results, image of two upper chambers had the second high spatial frequency at sensitivity at 625(High) was 1.343 lp/mm. RMS value of image selecting two upper chambers was low secondly. SNR, CNR, MSR were the high value secondly. As the sensitivity was increased, radiation dose was decreased but better image could be obtained on image quality. In order to obtain the best medical images while minimizing the dose, usage of two upper ion chambers is considered to be clinically useful at sensitivity 625(High).

Processing and Reduction Factors of Azoxystrobin and Flutolanil in Garlic by Freeze-Drying (동결건조에 따른 마늘 중 azoxystrobin과 flutolanil의 가공계수 및 감소계수)

  • Noh, Hyun-Ho;Kang, Kyung-Won;Park, Hyo-Kyoung;Lee, Kwang-Hun;Lee, Jae-Yun;Lee, Eun-Young;Park, Young-Soon;Kyung, Kee-Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.3
    • /
    • pp.235-240
    • /
    • 2010
  • In order to elucidate residual characteristics of pesticides in garlic by drying, azoxystrobin and flutolanil used for garlic were treated to the garlic by dipping for 1 and 5 min into their standard diluents and then the garlic was dried with a freeze-drier. The test pesticides were analyzed with a GLC-ECD/NPD. Recoveries of the pesticides ranged from 81.96 to 98.18%. Amount of azoxystrobin and flutolanil in fresh garlic were 0.34 and 1.18 mg/kg in case of dipping for 1 min. and 0.44 and 2.15 mg/kg in case of dipping for 5 min., respectively. Also, amount of azoxystrobin and flutolanil in dried garlic were 0.80 and 4.51 mg/kg in case of dipping for 1 min. and 1.03, 5.28 mg/kg in case of dipping for 5 minute, respectively, representing that concentration of the test pesticides in garlic were increased by drying. In case of dipping for 1 and 5 min., processing factors of azoxystrobin were 2.35 and 3.34 and those of flutolanil were 1.19 and 1.17, respectively. Reduction factors of the pesticides in garlic were range from 0.94 to 0.97, indicating that few amounts of the test pesticides in garlic were dissipated by freeze-drying.

Flexural Tensile Strength of CJP Groove Welded Joints Connecting Thick HSA800 Plates (HSA800 후판재의 완전용입 맞댐용접부 휨-인장강도 실험)

  • Lee, Cheol Ho;Kim, Dae Kyung;Han, Kyu Hong;Park, Chang Hee;Kim, Jin Ho;Lee, Seung Eun;Kim, Do Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.5
    • /
    • pp.407-418
    • /
    • 2014
  • As a continuing work of previously conducted standard tension tests, full-scale flexural tests were conducted in this study to assess the structural performance the CJP groove welded joints connecting thick HSA800 plates. Two welding electrodes were available at the time of this experimental research; one was GMAW-based electrode A and the other FCAW-based electrode B. Three full-scale box-type beam specimens with single bevel- and V-groove CJP welded joints were fabricated from 60mm and 25mm thick HSA800 plates according to the AWS-prequalified groove welded joint details. In designing the specimens, all possible limit states like local and lateral torsional buckling were carefully controlled in order to induce flexural plastic yielding or eventual joint fracture. All the CJP joints made by both welding electrodes showed satisfactory performance and were able to transfer the tensile flange forces higher than that corresponding to the measured tensile strength of HSA800 flange plates. However, it should be noted that, during fabrication, serious concerns about the welding efficiency and workability of the GMAW-based electrode were raised by a certified welder. The fracture occurred at the unbeveled (or vertical) interface between the weldment and the base metal when the GMAW-based electrode was used in the single-bevel joint, implying the possibility of insufficient melting. Thus, the FCAW-based electrode B is again recommended as the choice of welding electrode for HSA800 plates. The limited test data of this study implies that the V-groove CJP joint should be used in favor of the single bevel CJP joint, if possible.

On-stream Activity and Surface Chemical Structure of CoO2/TiO2 Catalysts for Continuous Wet TCE Oxidation (습식 TCE 분해반응에서 CoO2/TiO2 촉매의 반응활성 및 표면화학적 구조)

  • Kim Moon Hyeon;Choo Kwang-Ho
    • Journal of Environmental Science International
    • /
    • v.14 no.2
    • /
    • pp.221-230
    • /
    • 2005
  • Catalytic wet oxidation of trichloroethylene (TCE) in water has been conducted using $TiO_2-supported$ cobalt oxides at $36^{\circ}C$ with a weight hourly space velocity of $7,500\;h^{-1}.\;5\%\;CoO_x/TiO_2$, prepared by using an incipient wetness technique, might be the most promising catalyst for the wet oxidation although it exhibited a transient behavior in time on-stream activity. Not only could the bare support be inactive for the wet decomposition reaction, but no TCE removal also occurred by the process of adsorption on $TiO_2$ surface. The catalytic activity was independent of all particle sizes used, thereby representing no mass transfer limitation in intraparticle diffusion. XPS spectra of both fresh and used Co surfaces gave different surface spectral features for each $CoO_x,\;Co\;2P_{3/2}$ binding energy for Co species in the fresh catalyst appeared at 781.3 eV, which is very similar to the chemical states of $CoTiO_x$ such as $CO_2TiO_4\;and\;CoTiO_3$. The used catalyst exhibited a 780.3-eV main peak with a satellite structure at 795.8 eV. Based on XPS spectra of reference Co compound, the TCE-exposed Co surfaces could be assigned to be in the form of mainly $Co_3O_4$. XRD patterns for $5\%\;CoO_x/TiO_2$ catalyst indicated that the phase structure of Co species in the catalyst even before reaction is quite comparable to the diffraction lines of external $Co_3O_4$ standard. A model structure of $CoO_x$ present predominantly on titania surfaces would be $Co_3O_4$, encapsulated in thin-film $CoTiO_x$ species consisting of $Co_2TiO_4$ and $CoTiO_3$, which may be active for the decomposition of TCE in a flow of water.

A Study on the Behavior of Piled Raft Foundation Using Triaxial Compression Apparatus (삼축압축 시험기를 이용한 말뚝 지지 전면 기초 거동 연구)

  • 이영생;홍승현
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.387-395
    • /
    • 2003
  • Model tests were conducted to study the behavior of the piled raft foundation system on sands. Especially in this study, the method using the triaxial compression apparatus was devised and used to apply the confining pressure which is considered difficult in the existing model test on the soil. Steel rods (6mm dia.) and aluminum plates (8mm thickness, 50mm dia.) were used to simulate piles and rafts respectively. Jumunjin standard sands were used to ensure the homogeneity of the sample. After the sample with the piled raft model was laid inside the triaxial cell, the confining pressure was applied and then the compressive force was applied. The increase and/or decrease ratio of the bearing capacity, the load distribution ratio between raft and piles and the effect of settlements decrease depending on the confining pressure, the number of piles and the length of piles were analyzed and the bearing capacity and skin friction of the pile was calculated. By the results of these experiments, the bearing capacity increased and the settlement decreased with this piled raft foundation system. Especially the effect was larger with the increase of the number of piles than with the increase of length of piles. Hereafter, the study of the load transfer mechanism of piles under confining pressure would be made possible using these small model tester like triaxial compression apparatus.