• 제목/요약/키워드: Transfer Film

검색결과 1,073건 처리시간 0.031초

수열합성법으로 제막한 MoO3 나노 구조체를 정공수송층으로 갖는 페로브스카이트 태양전지 특성분석 (Characteristics of Perovskite Solar Cell with Nano-Structured MoO3 Hole Transfer Layer Prepared by Hydrothermal Synthesis)

  • 송재관;안준섭;한은미
    • 한국재료학회지
    • /
    • 제30권2호
    • /
    • pp.81-86
    • /
    • 2020
  • MoO3 metal oxide nanostructure was formed by hydrothermal synthesis, and a perovskite solar cell with an MoO3 hole transfer layer was fabricated and evaluated. The characteristics of the MoO3 thin film were analyzed according to the change of hydrothermal synthesis temperature in the range of 100 ℃ to 200 ℃ and mass ratio of AMT : nitric acid of 1 : 3 ~ 15 wt%. The influence on the photoelectric conversion efficiency of the solar cell was evaluated. Nanorod-shaped MoO3 thin films were formed in the temperature range of 150 ℃ to 200 ℃, and the chemical bonding and crystal structure of the thin films were analyzed. As the amount of nitric acid added increased, the thickness of the thin film decreased. As the thickness of the hole transfer layer decreased, the photoelectric conversion efficiency of the perovskite solar cell improved. The maximum photoelectric conversion efficiency of the perovskite solar cell having an MoO3 thin film was 4.69 % when the conditions of hydrothermal synthesis were 150 ℃ and mass ratio of AMT : nitric acid of 1 : 12 wt%.

수직관내(垂直管內)를 흘러내리는 액막식(液膜式) 흡수기(吸收器)의 흡수(吸收) 및 열전달특성(熱傳達特性) (제(第) 1 보(報), 흡수특성(吸收特性)) (Characteristics of Absorption and Heat Transfer for Film Falling along a Vertical inner Tube (1st Report, Characteristics of Absorption))

  • 엄기찬;백목 효부;서정윤
    • 설비공학논문집
    • /
    • 제5권1호
    • /
    • pp.1-9
    • /
    • 1993
  • Mass transfer coefficients were measured for water vapor absorption into a LiBr-Water solution of 60wt% flowing down an absorber of vertical tube type. The absorber is copper tube of 25mm inner diameter and 1000mm length. The film Reynolds number were varied in the range of 35~130. The solution is fed from the top of the pipe, and the conditions of solution are supercooled liquid and superheated liquid. As results, the flowrates of LiBr solution which takes peak value of average absorption mass flux exist. Mass transfer coefficients decrease with increasing the flowrate of LiBr solution, and the decrease rate in the case of supercooled liquid is large as compared with that in the case of superheated liquid. But the absorption rate of supercooled liquid is decidedly superior to that of superheated liquid.

  • PDF

폴리(에틸렌 나프탈레이트)의 축중합 반응에서 물질 전달 현상 (Mass Transfer Phenomena in Polycondensation Reaction of Poly(ethylene naphthalate))

  • 이성진;정성일
    • 폴리머
    • /
    • 제28권2호
    • /
    • pp.121-127
    • /
    • 2004
  • 폴리(에틸렌 나프탈레이트)의 축중합 반응은 가역반응이므로 부반응 물질인 에틸렌 글라이콜의 신속한 제거가 높은 분자량의 제품을 얻는데 매우 중요하다. 본 연구에서는 폴리(에틸렌 나프탈레이트)올리고머로 박막을 제조하여 실제 반응기와 동일한 조건 하에서 (28$0^{\circ}C$, <0.1mmHg) 반응시켜 이 때 일어나는 물질 전달 현상을 관찰하고자 하였다. 여러 가치 두께의 박막을 제조하여 반응 실험한 결과 두께가 0.025cm 이하의 영역에서는 박막에서의 물질 전달 저항이 크지 않아 총괄 반응 속도에 영향을 미치지 않음을 관찰하였다. 물질 전달 모델 및 확산 모델을 사용하여 반응 결과를 예측한 결과 두 모델 모두 실험 결과를 잘 예측하였으나 확산 모델의 경우 중합도가 낮은 영역에서 물질 전달 모델에 비해 반응이 더 빨리 진행되는 경향을 보였다. 두 모델을 이용하여 물질 전달 관련 계수를 예측한 결과 폴리(에틸렌 나프탈레이트)에서의 확산 계수는 4.7${\times}$$10^{-6}$$\textrm{cm}^2$/sec, 물질 전달 계수는 1.4${\times}$$10^{-4}$cm/sce로 폴리(에틸렌 테레프탈레이트) 경우보다 작은 값을 보였다.

Vertically Standing Graphene on Glass Substrate by PECVD

  • Ma, Yifei;Hwang, Wontae;Jang, Haegyu;Chae, Heeyeop
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.232.2-232.2
    • /
    • 2014
  • Since its discovery in 2004, graphene, a sp2-hybridized 2-Dimension carbon material, has drawn enormous attention. A variety of approaches have been attempted, such as epitaxial growth from silicon carbide, chemical reduction of graphene oxide and CVD. Among these approaches, the CVD process takes great attention due to its guarantee of high quality and large scale with high yield on various transition metals. After synthesis of graphene on metal substrate, the subsequent transfer process is needed to transfer graphene onto various target substrates, such as bubbling transfer, renewable epoxy transfer and wet etching transfer. However, those transfer processes are hard to control and inevitably induce defects to graphene film. Especially for wet etching transfer, the metal substrate is totally etched away, which is horrendous resources wasting, time consuming, and unsuitable for industry production. Thus, our group develops one-step process to directly grow graphene on glass substrate in plasma enhanced chemical vapor deposition (PECVD). Copper foil is used as catalyst to enhance the growth of graphene, as well as a temperature shield to provide relatively low temperature to glass substrate. The effect of growth time is reported that longer growth time will provide lower sheet resistance and higher VSG flakes. The VSG with conductivity of $800{\Omega}/sq$ and thickness of 270 nm grown on glass substrate can be obtained under 12 min growing time. The morphology is clearly showed by SEM image and Raman spectra that VSG film is composed of base layer of amorphous carbon and vertically arranged graphene flakes.

  • PDF

원판증발기를 가진 회전형 히트파이프에서 액막두께가 전열에 미치는 영향 (The Effect of Film Thicknesses on Heat Transfer in a Rotating Heat Pipe with the Disc Evaporator)

  • 권순석;장영석;유병욱
    • 대한기계학회논문집
    • /
    • 제18권6호
    • /
    • pp.1572-1581
    • /
    • 1994
  • Heat transfer characteristics in a rotating heat pipe with evaporator of the rotating disc and the condenser of the screwed groove is investigated by numerical method for various dimensionless film thicknesses, Re, C_{p}{\Delta}T/h_{fg}$, rotational speed and working fluids. The temperature difference between evaporator wall and vapor increases a little, but the temperature difference between condenser wall and vapor decreases rapidly as Re increases. As the dimensionless film thickness decreases, the temperature difference of evaporator and condenser decreases. As the rotational speed increases, the temperature difference between evaporator wall and vapor increases but the temperature difference between condenser wall and vapor decreases. The Nusselt number can be shown as a function of dimensionless film thickness and Re, that is $Nu=0.963\cdot(\delta^{-1}(\omega/\vpsilon)^{-1/2}{\cdot}Re^{0.5025})$.

에너지 하베스팅용 압전 캔틸레버의 위치에 따른 파단점 분석 (Analysis of the Failure Position in the Unimorph Cantilever for Energy Harvesting)

  • 김형찬;정대용;윤석진;김현재
    • 한국재료학회지
    • /
    • 제17권2호
    • /
    • pp.121-123
    • /
    • 2007
  • Energy harvesting from the vibration through the piezoelectric effect has been studied for powering the wireless sensor node. As piezoelectric unimorph cantilever structure can transfer low vibration to large displacement, this structure was commonly deployed to harvest electric energy from vibrations. Piezoelectric unimorph structure was composed of small stiff piezoelectric ceramic on the large flexible substrate. As there is the large Young's modulus difference between the flexible substrate and stiff piezoelectric ceramic, flexible substrate could not homogeneously transfer the vibration to stiff piezoelectric ceramic. As a result, most piezoelectric ceramics had been broken at the certain point. We measured and analyzed the stress distribution on the piezoelectric ceramic on the cantilever.

III-V 족 MOCVD 공정의 열전달 및 필름 성장에 대한 연구 (A Study on the Heat Transfer and Film Growth During the III-V MOCVD Processes)

  • 임익태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1213-1218
    • /
    • 2004
  • Film growth rate of InP and GaAs using TMI, TMG, TBA and TBP is numerically predicted and compared to the experimental results. Obtained results show that the film growth rate is very sensitive to the thermal condition in the reactor. To obtain exact thermal boundary conditions at the reactor walls, we analyzed the gas flow and heat transfer in the reactor including outer tube as well as the inner reactor parts using a full three-dimensional model. The results indicate that the exact thermal boundary conditions are important to get precise film growth rate prediction.

  • PDF

A Study on Heat Transfer and Film Growth Rate During the III-V MOCVD Processes

  • Ik Tae, Im;MASAKAZU, SUGIYAMA;VOSHIAKI, NAKANO;YUKIHIRO, SHIMOGAKI
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2003년도 추계학술대회 발표 논문집
    • /
    • pp.192-199
    • /
    • 2003
  • Film growth of InP and GaAs using TMIn, TMGa, TBAs and TBP is numerically predicted and compared to the experimental results. To obtain exact thermal boundary conditions at the reactor walls, the gas flow and heat transfer are analyzed for full three-dimensional reactor including outer tube as well as the inner reactor parts. The results indicate that the exact thermal boundary conditions are important to get precise film growth rate prediction since film deposition is mainly controlled by the temperature dependent diffusion. The results also show that thermal diffusion plays an important role in the upstream region.

  • PDF

가스터빈 연소실 및 블레이드 막냉각에서 와류 및 높은 난류 강도의 유동 효과에 대한 연구 (Effect of Vortex and High Turbulence on Film Cooling for Gas Turbine Combustor and Blades)

  • 조형희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 추계학술대회 논문집 학회본부
    • /
    • pp.471-474
    • /
    • 1996
  • The effects of injection angles between $0^{\circ}$ and $9^{\circ}$, mainstream turbulent intensities between 0.36 percent and 9.3 percent and embedded longitudinal vortices on jets issuing from a single film cooling hole and from a row of inclined holes are investigated. The heat transfer coefficients around film cooling holes are affected greatly by the compound injection angles. The injected jets affected weakly by the freestream turbulence at low level. However, the heat transfer coefficients near the film cooling holes have higher values at a high turbulence intensity. The vortices generated from a delta winglet change the injected jet direction and the kidney-type vortex pattern.

  • PDF

굴절 현상을 이용한 건조기에서 건조특성 해석 (Analysis of Drying Characteristics in the Dryer Using the Refraction of Radiation)

  • 이공훈;최병일;홍용주
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.1191-1196
    • /
    • 2006
  • Analysis of drying characteristics has been carried out with one-dimensional model in the dryer using the principle of the refraction of radiation. The dryer is composed of hot water tank, a plastic film conveyer belt, drying material, etc. The model considers the conduction and radiation within the plastic film and drying material. The film is semitransparent to radiation and the drying material is assumed to be semitransparent or opaque to radiation. The results shows that the effect of radiative transfer on the drying rate is relatively large when the thickness of drying material is small and the water temperature is high. When the material is thin, the drying rate by only conduction is also enhanced so that drying time can considerably be reduced.

  • PDF