III-V MOCVD

[†] · Yukihiro Shimogaki^{*}

A Study on the Heat Transfer and Film Growth During the III-V MOCVD Processes

Ik-Tae Im, and Yukihiro Shimogaki

Key Words :	MOCVD(), Computational Fluid Dynamics(),
	Semiconductor III-V Mater	als(III-V)	

Abstract

Film growth rate of InP and GaAs using TMI, TMG, TBA and TBP is numerically predicted and compared to the experimental results. Obtained results show that the film growth rate is very sensitive to the thermal condition in the reactor. To obtain exact thermal boundary conditions at the reactor walls, we analyzed the gas flow and heat transfer in the reactor including outer tube as well as the inner reactor parts using a full three-dimensional model. The results indicate that the exact thermal boundary conditions are important to get precise film growth rate prediction.

ε/k		[]	K]			가		
σ A Ea		[Å] [1/s [kJ/mol]	m/s]	가	. ⁽¹⁾ MOC	VD		
	1.						MOCV	′D
MOCVD GaAs	가 . MOCVD III-V		InP	GaAs	Feron	⁽²⁾ InGaAs	InGaAsP	InP
	가			2	2			
† E-mail TEL : ((* Dept. or	: itim@iksan.ac.kr 063)840-6651 f Materials Eng., I	Univ. of Tokyo				Fei	ron ⁽²⁾ M(CVD

	10kPa		13000sccm	
. 1 1	TMI, TMG, TBP 18, 18 Pa 7} .	TBA	0.437, 0 610°C	.573,
	2.2			
I	FLUENT ⁽³⁾			가

2.1 Fig. 1 (AIXTRON AIX200/4)가

2.

3

5000sccm

ĺ,

Fig. 1 Grid systems for the inner liner(top) and a whole reactor including outer tube(bottom).

Table 1 Lennard-Jones parameters used in the computation, ε/k is the potential well depths and σ is the collision diameters, respectively, where k is the Boltzmann constant.

Species	ε/k (K)	σ (Å)
TMG	378	5.52
MMG	972	4.92
TMI	454	5.62
MMI	1049	5.02
TBA	397	5.98
AsH	200	4.22
TBP	376	5.93
PH	190	4.07
C_4H_8	357	5.18
CH_4	141	3.75
H_2	38	2.92

 Table 2 Reaction chemistry and reaction rate constants.

Gas-phase reactions						
$TMI + H_2$	\rightarrow	MMI + 2CH	[4	Ι		
$TMG + H_2$	\rightarrow	MMG + 2CI	H_4	II		
TBA	\rightarrow	$AsH + C_4H_8$	$+ H_{2}$	III		
TBP	\rightarrow	$PH + C_4H_8 +$	- H ₂	IV		
	Surfac	e reactions				
MMI + PH	\rightarrow	InP <s>+ CI</s>	H_4	V		
MMG + AsH	\rightarrow	GaAs <s>+</s>	CH_4	VI		
Reactions	Α(1/s)	Ea (kJ	/mol)		
Ι	1.8	6E15	186			
II	1.2	E15	196			
III	5.3	2E15	203			
IV	4.4	2E14	219			
	A (m/s)		Ea (kJ	/mol)		
V	5E5	5	80			
VI	1.2	3E9	130			

Fig. 2 Predicted growth rate curves with measured values for the InP film.

(1)

Fig. 3 Predicted growth rate curves with measured values for the GaAs film.

				가		InP 가	GaAs
kinetic	theory ⁽⁴⁾	. K	linetic				
Le	nnard-Jones	Tab	ole 1				
	(CHEMKIN					
					(diffusion-limited)	(7)	
				Feron	0.003		
(2)		. TMG	TMI				
	М	MGa MMI	'n		Fig. 2		
가	. TE AsH	As TBP PH 7† Sus	V Table 2 ziyama ⁽⁵⁾		Fig. 4	L	x
	Oh ⁽⁶⁾	202	,	Table	0.12, 0.23	0.36m	
2	II	A V				Z	
(5)			5				x=0.12m
					가		
					가		
	3.				Fig. 2 3		
~ .					• 1	71	
3.1 Eig	2 2	2				- 1	
гıg.	2 3	2			MMIn PH		
InP	GaAs		x=0				
	Our is		. A=0 Z				
			L				

Fig. 4 Temperature profiles at upstream, middle and downstream part along the height direction of the reactor.

Fig. 5 Temperature profiles of the reactor inner liner bottom wall, conduction means axial conduction within the reactor quartz walls.

3.2

3.2.1 3

(2)

.

DTRM

Fig. 6 Temperature profiles of the reactor inner liner up-wall and sidewall, axial conduction is included in 3dimensional calculations.

Fig. 7 Comparisons of the InP growth rate curves using two-dimensional and three-dimensional heat transfer analyses with experiments.

Fig. 8 Comparisons of the GaAs growth rate curves using two-dimensional and three-dimensional heat transfer analyses with experiments.

- Kleijn, C. R. 1995, Chemical Vapour Deposition Processes in Computational Modeling in Semiconductor Processing, Ed. by M. Meyyappan, Artech House, Boston, pp. 110-128.
- (2) Feron, O., Sugiyama, M., Asawamethapant, W., Futakuchi, N., Feurprier, Y., Nakano, Y., and Shimogaki, Y., 2000, "MOCVD of InGaAsP, InGaAs and InGaP over InP and GaAs substrates: distribution of composition and growth rate in a horizontal reactor", *Appl. Surf. Sci.*, Vol. 159-160, pp. 318-327.
- (3) FLUENT is a product of Fluent Inc., 10 Cavendish Court, Centerra Park Lebanon, NH 03766, USA.
- (4) Poling, B. E., Prausnitz, J. M. and O'Connell, J. P., 2001, *The Properties of Gases and Liquids*, 5e, McGraw-Hill, Boston, p. 9.2.
- (5) Sugiyama, M., Kusunoki, K., Shimogaki, Y., Sudo, S., Nakano, Y., Nagamoto, H., Sugawara, K., Tada, K., and Komiyama, H., 1997, "Kinetic studies on thermal decomposition of MOVPE sources using fourier transform infrared spectroscopy", *Appl. Surf. Sci.*, Vol. 117/118, pp. 746-752.
- (6) Oh, H. J., Sugiyama, M., Nakano, Y. and Shimogaki, Y., 2003, "Surface reaction kinetics in metalorganic vapor phase epitaxy of GaAs through analyses of growth rate profile in wide-gap selective-area growth", *Jap. J. Appl. Phycs.*, Vol. 42 No. 10, pp. 6284-6291.
- (7) Im, I.-T., Oh, H., Sugiyama, M., Nakano, Y. and Shimogaki, Y., 2004, "Fundamental kinetics determining growth rate profiles of InP and GaAs in MOCVD with horizontal reactor", *J. Crystal Growth*, Vol. 261, No. 2-3, pp. 419-426.
- (8) Durst, F., Kadinski, L., Makarov, Y. N., Schäfr, M., Vasil'ev, M. G. and Yuferev, V. S., 1997, "Advanced mathematical models for simulation of radiative heat transfer in CVD reactors, *J. Crystal Growth*, Vol. 172, pp. 389-395.
- (9) Mucciato, R., Lovergine, N., 2000, "Detailed thermal boundary conditions in the 3D fluid dynamic modelling of horizontal MOVPE reactors", *J. of Crystal Growth*, Vol. 221, pp. 758-764.