• Title/Summary/Keyword: Trajectory Model

Search Result 1,031, Processing Time 0.024 seconds

Trajectory control of the flexible manipulator with time-varying arm

  • Yamazaki, Hidetaka;Ono, Toshiro;Park, Chang-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.405-408
    • /
    • 1996
  • Several papers have already been reported on the flexible manipulator with constant arm length. Some of industrial manipulators, however, have sliding joints. It means that the length of their arm or link varies with time. This paper discusses the trajectory contro lof such a manipulator model, and shows some of the experimental results.

  • PDF

Trajectory tracking controls for a robot manipulator with artificial muscles (인공 고무 근육을 이용한 로보트 메니퓨레이터의 선형 궤도 추적 제어)

  • ;Watanabe, Keigo;Nakamura, Masatoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.642-646
    • /
    • 1992
  • Trajectory tracking control problems are described for a two-link robot manipulator with artificial rubber muscle actuators. Under the assumption that the so-called independent joint control is applied to the control system, the dynamic model for each link is identified as a linear second-order system with time-lag by the step response. Two control laws such as the feedforward and the computed torque control methods, are experimentally applied for controlling the circular trajectory of an actual robot manipulator.

  • PDF

Simultaneous Trajectory Tracking Control of Position and Force with Pneumatic Cylinder Driving Apparatus

  • Jang Ji Seong
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1107-1115
    • /
    • 2005
  • In this study, a position and force simultaneous trajectory tracking control algorithm is proposed for a driving apparatus that consists of two pneumatic cylinders connected in series. The controller applied to the driving apparatus is composed of a non-interaction controller to compensate for interaction between cylinders and a disturbance observer aimed to reduce the effect of model discrepancy that cannot be compensated by the non-interaction controller. The effectiveness of the proposed control algorithm is proved by experimental results.

A Finite Impulse Response Fixed-lag Smoother for Discrete-time Nonlinear Systems (이산 비선형 시스템에 대한 유한 임펄스 응답 고정 시간 지연 평활기)

  • Kwon, Bo-Kyu;Han, Sekyung;Han, Soohee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.9
    • /
    • pp.807-810
    • /
    • 2015
  • In this paper, a finite impulse response(FIR) fixed-lag smoother is proposed for discrete-time nonlinear systems. If the actual state trajectory is sufficiently close to the nominal state trajectory, the nonlinear system model can be divided into two parts: The error-state model and the nominal model. The error state can be estimated by adapting the optimal time-varying FIR smoother to the error-state model, and the nominal state can be obtained directly from the nominal trajectory model. Moreover, in order to obtain more robust estimates, the linearization errors are considered as a linear function of the estimation errors. Since the proposed estimator has an FIR structure, the proposed smoother can be expected to have better estimation performance than the IIR-structured estimators in terms of robustness and fast convergence. Additionally the proposed method can give a more general solution than the optimal FIR filtering approach, since the optimal FIR smoother is reduced to the optimal FIR filter by setting the fixed-lag size as zero. To illustrate the performance of the proposed method, simulation results are presented by comparing the method with an optimal FIR filtering approach and linearized Kalman filter.

Parameter Optimization and Automation of the FLEXPART Lagrangian Particle Dispersion Model for Atmospheric Back-trajectory Analysis (공기괴 역궤적 분석을 위한 FLEXPART Lagrangian Particle Dispersion 모델의 최적화 및 자동화)

  • Kim, Jooil;Park, Sunyoung;Park, Mi-Kyung;Li, Shanlan;Kim, Jae-Yeon;Jo, Chun Ok;Kim, Ji-Yoon;Kim, Kyung-Ryul
    • Atmosphere
    • /
    • v.23 no.1
    • /
    • pp.93-102
    • /
    • 2013
  • Atmospheric transport pathway of an air mass is an important constraint controlling the chemical properties of the air mass observed at a designated location. Such information could be utilized for understanding observed temporal variabilities in atmospheric concentrations of long-lived chemical compounds, of which sinks and/or sources are related particularly with natural and/or anthropogenic processes in the surface, and as well as for performing inversions to constrain the fluxes of such compounds. The Lagrangian particle dispersion model FLEXPART provides a useful tool for estimating detailed particle dispersion during atmospheric transport, a significant improvement over traditional "single-line" trajectory models that have been widely used. However, those without a modeling background seeking to create simple back-trajectory maps may find it challenging to optimize FLEXPART for their needs. In this study, we explain how to set up, operate, and optimize FLEXPART for back-trajectory analysis, and also provide automatization programs based on the open-source R language. Discussions include setting up an "AVAILABLE" file (directory of input meteorological fields stored on the computer), creating C-shell scripts for initiating FLEXPART runs and storing the output in directories designated by date, as wells as processing the FLEXPART output to create figures for a back-trajectory "footprint" (potential emission sensitivity within the boundary layer). Step by step instructions are explained for an example case of calculating back trajectories derived for Anmyeon-do, Korea for January 2011. One application is also demonstrated in interpreting observed variabilities in atmospheric $CO_2$ concentration at Anmyeon-do during this period. Back-trajectory modeling information introduced in this study should facilitate the creation and automation of most common back-trajectory calculation needs in atmospheric research.

Trajectory Tracking Control of Mobile Robot using Multi-input T-S Fuzzy Feedback Linearization (다중 입력 T-S 퍼지 궤환 선형화 기법을 이용한 이동로봇의 궤도 추적 제어)

  • Hwang, Keun-Woo;Kim, Hyeon-Woo;Park, Seung-Kyu;Kwak, Gun-Pyong;Ahn, Ho-Kyun;Yoon, Tae-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1447-1456
    • /
    • 2011
  • In this paper, we propose a T-S fuzzy feedback linearization method for controlling a non-linear system with multi-input, and the method is applied for trajectory tracking control of wheeled mobile robot. First, an error dynamic equation of wheeled mobile robot is represented by a T-S fuzzy model, and then the T-S fuzzy model is transformed to a linear control system through the nonlinear fuzzy coordinate change and the nonlinear state feedback input. Simulation results showed that the trajectory tracking controller by using the proposed multi-input feedback linearization method gives better performance than the trajectory tracking controller by using the PDC(Parallel Distributed Compensation) method for controlling the T-S Fuzzy system.

Trajectory tracking control system of unmanned ground vehicle (무인자동차 궤적 추적 제어 시스템에 관한 연구)

  • Han, Ya-Jun;Kang, Chin-Chul;Kim, Gwan-Hyung;Tac, Han-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.10
    • /
    • pp.1879-1885
    • /
    • 2017
  • This paper discusses the trajectory tracking system of unmanned ground vehicles based on predictive control. Because the unmanned ground vehicles can not satisfactorily complete the path tracking task, highly efficient and stable trajectory control system is necessary for unmanned ground vehicle to be realized intelligent and practical. According to the characteristics of unmanned vehicle, this paper built the kinematics tracking models firstly. Then studied algorithm solution with the tools of the optimal stability analysis method and proposed a tracking control method based on the model predictive control. The controller used a kinematics-based prediction model to calculate the predictive error. This controller helps the unmanned vehicle drive along the target trajectory quickly and accurately. The designed control strategy has the true robustness, simplicity as well as generality for kinematics model of the unmanned vehicle. Furthermore, the computer Simulink/Carsim results verified the validity of the proposed control method.

A Design on Multivariable Controller for Industrial Robot Manipulators (산업용 로봇 매니퓰레이터의 다변수 제어기 설계)

  • 한상완;홍석교
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.636-643
    • /
    • 1998
  • This paper is presents multivariable control scheme for industrial robot manipulators. The control scheme consists of two loops. The modeling error between linearized robot model and actual robot model is compensated in error compensation loop. The PID control loop is designed for pole assignment to stability of robot system and utilized for trajectory tracking. Alternatively computer simulation results are given for illustration purpose of suggested controller.

  • PDF

Spatial Analysis of Wind Trajectory Prediction According to the Input Settings of HYSPLIT Model (HYSPLIT 모형 입력설정에 따른 바람 이동경로 예측 결과 공간 분석)

  • Kim, Kwang Soo;Lee, Seung-Jae;Park, Jin Yu
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.222-234
    • /
    • 2021
  • Airborne-pests can be introduced into Korea from overseas areas by wind, which can cause considerable damage to major crops. Meteorological models have been used to estimate the wind trajectories of airborne insects. The objective of this study is to analyze the effect of input settings on the prediction of areas where airborne pests arrive by wind. The wind trajectories were predicted using the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. The HYSPLIT model was used to track the wind dispersal path of particles under the assumption that brown plant hopper (Nilaparvata lugens) was introduced into Korea from sites where the pest was reported in China. Meteorological input data including instantaneous and average wind speed were generated using meso-scale numerical weather model outputs for the domain where China, Korea, and Japan were included. In addition, the calculation time intervals were set to 1, 30, and 60 minutes for the wind trajectory calculation during early June in 2019 and 2020. It was found that the use of instantaneous and average wind speed data resulted in a considerably large difference between the arrival areas of airborne pests. In contrast, the spatial distribution of arrival areas had a relatively high degree of similarity when the time intervals were set to be 1 minute. Furthermore, these dispersal patterns predicted using the instantaneous wind speed were similar to the regions where the given pest was observed in Korea. These results suggest that the impact assessment of input settings on wind trajectory prediction would be needed to improve the reliability of an approach to predict regions where airborne-pest could be introduced.