DOI QR코드

DOI QR Code

Spatial Analysis of Wind Trajectory Prediction According to the Input Settings of HYSPLIT Model

HYSPLIT 모형 입력설정에 따른 바람 이동경로 예측 결과 공간 분석

  • Kim, Kwang Soo (Department of Agriculture, Forestry and Bioresources, Seoul National University) ;
  • Lee, Seung-Jae (National Center for AgroMeteorology) ;
  • Park, Jin Yu (Research Institute Agriculture and Life Sciences, Seoul National University)
  • 김광수 (서울대학교 농림생물자원학부) ;
  • 이승재 (국가농림기상센터) ;
  • 박진유 (서울대학교 농업생명과학연구원)
  • Received : 2021.11.16
  • Accepted : 2021.12.29
  • Published : 2021.12.30

Abstract

Airborne-pests can be introduced into Korea from overseas areas by wind, which can cause considerable damage to major crops. Meteorological models have been used to estimate the wind trajectories of airborne insects. The objective of this study is to analyze the effect of input settings on the prediction of areas where airborne pests arrive by wind. The wind trajectories were predicted using the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. The HYSPLIT model was used to track the wind dispersal path of particles under the assumption that brown plant hopper (Nilaparvata lugens) was introduced into Korea from sites where the pest was reported in China. Meteorological input data including instantaneous and average wind speed were generated using meso-scale numerical weather model outputs for the domain where China, Korea, and Japan were included. In addition, the calculation time intervals were set to 1, 30, and 60 minutes for the wind trajectory calculation during early June in 2019 and 2020. It was found that the use of instantaneous and average wind speed data resulted in a considerably large difference between the arrival areas of airborne pests. In contrast, the spatial distribution of arrival areas had a relatively high degree of similarity when the time intervals were set to be 1 minute. Furthermore, these dispersal patterns predicted using the instantaneous wind speed were similar to the regions where the given pest was observed in Korea. These results suggest that the impact assessment of input settings on wind trajectory prediction would be needed to improve the reliability of an approach to predict regions where airborne-pest could be introduced.

바람에 의해 해외지역에서 국내로 유입되는 비래해충들은 주요 작물에 상당한 피해를 초래할 수 있다. 바람에 의한 비래해충의 이동 경로를 추정하기 위해 기상 모형들이 사용되는데, 본 연구에서는 비래해충이 도달할 수 있는 지역을 예측할 때 입력설정이 미치는 영향을 분석하였다. 벼멸구가 중국에서 국내로 유입된다는 가정하에 입자의 바람이동 경로를 추적하기 위해 개발된 HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) 모형을 사용하여 바람의 이동경로를 예측하였다. 중국, 한국 및 일본이 포함된 중규모 수치기상모형 자료를 사용하여 순간 및 평균 풍속자료가 포함된 기상입력자료를 생성하였다. 또한, 이동 경로 계산을 위해 계산 시간 간격을 1, 30, 60분으로 설정하였다. 중국에서 벼멸구가 관측된 지점에서 2019년과 2021년 6월 상순 기간 동안 바람의 이동 경로를 계산한 결과, 순간 풍속과 평균 풍속자료를 사용함에 따라 비래해충 도달지점에 큰 차이가 나타났다. 계산 시간에 따른 이동 경로 결과값들의 공간적 분포는 상대적으로 유사도가 높았으며, 순간풍속을 사용한 경우 벼멸구 관측지역과 비교적 유사한 경향이 나타났다. 이러한 결과는 바람 경로를 추적하여 비래해충 도착지점을 추정할 때 사용되는 입력자료의 특성을 파악하고 이들로부터 발생하는 불확도에 대한 고려가 필요함을 시사한다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 공동연구사업(과제번호: PJ015620022021)의 지원으로 수행되었음

References

  1. Bae, Y. H., J. H. Lee, and J. S. Hyun, 1994: A systematic application of insecticides of manage early season insect pests and migratory planthoppers on rice. Korean Journal of Applied Entomology 33(4), 270-280.
  2. Choi, N. J., I. H. Jeong, D. H. Kwon, M. Y. Choi, and C. H. Baik, 2017: Life table analysis of the brown planthopper, Nilaparvata lugens Stal (Hemiptera: Delphacidae) on rice of resistant cultivars. Korean Journal of Environmental Biology 35(4), 526-532. https://doi.org/10.11626/KJEB.2017.35.4.526
  3. Chung, U., J. Cho, E.-J. Lee, 2015: Evaluation of agro-climatic index using multi-model ensemble downscaled climate prediction of CMIP5. Korean Journal of Agricultural and Forest Meteorology 17, 108-125. https://doi.org/10.5532/KJAFM.2015.17.2.108
  4. Draxler, R. R., and G. D. Hess, 1998: An overview of the HYSPLIT_4 modeling system for trajectories, dispersion, and deposition. Australian Meteorological Magazine 47, 295-308.
  5. Draxler, R. R., and G. D. Hess, 1997: Description of the Hysplit_4 modeling system. NOAA Tech. Memo. ERL ARL-224.
  6. Furlong, M. J., K. H. Ju, P. W. Su, J. K. Chol, R. C. Il and M. P. Zalucki, 2008: Integration of endemic natural enemies and Bacillus thuringiensis to manage insect pests of Brassica crops in North Korea. Agriculture, ecosystems & environment 125(1-4), 223-238. https://doi.org/10.1016/j.agee.2008.01.003
  7. GBIF (Global Biodiversity Information Facility), 2021: GBIF Occurrence Download. https://doi.org/10.15468/dl.eb5mbe
  8. Ghil, M., S. Cohn, J. Tavantzis, K. Bube, and E. Isaacson, 1981: Applications of estimation theory to numerical weather prediction. In Dynamic meteorology: Data assimilation methods, 139-224. Springer, New York, NY.
  9. Hagen-Zanker, 2006: Comparing Continuous Valued Raster Data: A Cross Disciplinary Literature Scan.
  10. Hersbach, H., B. Bell, P. Berrisford, S. Hirahara, A.Horanyi, J. Munoz-Sabater, J. Nicolas, C. Peubey, R. Radu, D. Schepers, A. Simmons, C. Soci, S. Abdalla, X. Abellan, G. Balsamo, P. Bechtold, G. Biavati, J. Bidlot, M. Bonavita, G. Chiara, P. Dahlgren, D. Dee, M. Diamantakis, R. Dragani, J. Flemming, R. Forbes, M. Fuentes, A. Geer, L. Haimberger, S. Healy, R. J. Hogan, E. Holm, M. Janiskova, S. Keeley, P. Laloyaux, P. Lopez, C. Lupu, G. Radnoti, P. Rosnay, I. Rozum, F. Vamborg, S. Villaume, and J. Thepaut, 2020: The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146, 1999-2049. https://doi.org/10.1002/qj.3803
  11. Hong, M., S. H. Lee, S.-J. Lee, and J. Y. Choi, 2021: Application of High-Resolution Meteorological Data from NCAM-WRF to Characterize Agricultural Drought in Small-Scale Farmlands Based on Soil Moisture Deficit. Agricultural Water Management 243, 106494. https://doi.org/10.1016/j.agwat.2020.106494
  12. Kain, J. S., S. R. Dembek, S. J. Weiss, J. L. Case, J. J. Levit, and R. A. Sobash, 2010: Extracting unique information from high-resolution forecast models: Monitoring selected fields and phenomena every time step. Weather and forecasting 25(5), 1536-1542. https://doi.org/10.1175/2010WAF2222430.1
  13. Kim, S. I., K. B. Uhm, D. Y. Jin, and H. M. Park, 2019: Comparison on the time of occurrence of major rice insect pests based on growing degree day in northern part of Korean Peninsula. Korean Journal of Applied Entomology 58(3), 239-249. https://doi.org/10.5656/KSAE.2019.08.8.029
  14. Kim, K. S., and R. M. Beresford, 2008: Use of a spectrum model and satellite cloud data in the simulation of wheat stripe rust (Puccinia striiformis) dispersal across the Tasman Sea in 1980. Agricultural and Forest Meteorology 148, 1374-1382. https://doi.org/10.1016/j.agrformet.2008.04.004
  15. Kim, K.-H., J. Cho, Y.-H. Lee, 2016: Forecasting brown planthopper infestation in Korea using statistical models based on climatic tele-connections. Korean Journal of Applied Entomology 55, 139-148. https://doi.org/10.5656/ KSAE.2016.05.0.019
  16. Lander, T. A., E. K. Klein, S. Oddou-Muratorio, J.-N. Candau, C. Gidoin, A. Chalon, A. Roig, D. Fallour, M.-A. Auger-Rozenberg, and T. Boivin, 2014: Reconstruction of a windborne insect invasion using a particle dispersal model, historical wind data, and Bayesian analysis of genetic data. Ecology and Evolution 4(24), 4609-4625. https://doi.org/10.1002/ece3.1206
  17. Lee, S., S.-J. Lee, K. Jang, and J.-H. Chun, 2021: Drought monitoring based on vegetation type and reanalysis data in Korea. Atmosphere 12(2), 170. https://doi.org/10.3390/atmos12020170
  18. Lee, S. J., S.-J. Lee, and J. S. Koo, 2020: Database construction of high-resolution daily meteorological and climatological database using NCAM-LAMP: sunshine hour data. Korean Journal of Agricultural and Forest Meteorology 22(3), 135-143. https://doi.org/10.5532/KJAFM.2020.22.3.135
  19. Lee, S.-J., J. Song, and Y.-J. Kim, 2016: The NCAM Land-Atmosphere Modeling Package (LAMP) Version 1: Implementation and evaluation. Korean Journal of Agricultural and Forest Meteorology 18(4), 307-319. https://doi.org/10.5532/KJAFM.2016.18.4.307
  20. Otuka, A., Y. Zhou, G.-S. Lee, M. Matsumura, Y. Zhu, H.-H. Park, Z. Liu, and S. Sanada-Morimura, 2012: Prediction of overseas migration of the small brown planthopper, Laodelphax striatellus (Hemiptera: Delphacidae) in East Asia. Applied Entomology and Zoology 47, 379-388. https://doi.org/10.1007/s13355-012-0130-x
  21. Otuka, A., J. Dudhia, T. Watanabe, and A. Furuno, 2005: A new trajectory analysis method for migratory planthoppers, Sogatella furcifera (Horvath) (Homoptera: Delphacidae) and Nilaparvata lugens (Stal), using an advanced weather forecast model. Agricultural Forest Entomology 7(1), 1-9. https://doi.org/10.1111/j.1461-9555.2005.00236.x
  22. Park, H.-H, J.-H. Lee, and S.-T. Kim, 2005: Occurrence and population dynamics of spiders in transplanting rice fields under different levels of pest management. The Korean Journal of Ecology 28(5), 287-293. https://doi.org/10.5141/JEFB.2005.28.5.287
  23. Park, B. Y., S. K. Lee, H. H. Park, S. W. Jeon, I. H. Jeong, S. K. Park, M. Hossain, C.Sovandeth, W. Rattanakarmg, P. T. Vuong, and H. V. Chien, 2018a: Occurrence Patterns of Three Planthopper Species in Rice Fields in Bangladesh, Cambodia, Thailand and Vietnam. Korean Journal of Organic Agriculture 26(3), 489-500. https://doi.org/10.11625/KJOA.2018.26.3.489
  24. Park, T., H. Choe, H. Jeong, H. Jang, K. H. Kim, and J. J. Park, 2018b: Spatial pattern analysis for distribution of migratory insect pests at paddy field in jeolla-province. Korean journal of applied entomology 57(4), 361-372. https://doi.org/10.5656/KSAE.2018.11.0.048
  25. Park, J., H.-S. Kim, S.-J. Lee, and T. Ha, 2018: Numerical evaluation of JULES surface tiling scheme with high-resolution atmospheric forcing and land cover data. SOLA 14, 19-24. https://doi.org/10.2151/sola.2018-004
  26. Pender, J., 1994: Migration of the brown planthopper, Nilaparvata lugens (Stal.) with special reference to synoptic meteorology. Grana 33(2), 112-115. https://doi.org/10.1080/00173139409427843
  27. Rosenberg, L. J., and J. I. Magor, 1983: Flight duration of the brown planthopper, Nilaparvata lugens (Homoptera: Delphacidae). Ecological Entomology 8(3), 341-350. https://doi.org/10.1111/j.1365-2311.1983.tb00514.x
  28. Rosenberg, L. J., and J. I. Magor, 1987: Predicting windborne displacements of the brown planthopper, Nilaparvata lugens from synoptic weather data. 1. Long-distance displacements in the north-east monsoon. The Journal of Animal Ecology 56(1), 39-51. https://doi.org/10.2307/4798
  29. Shin, Y. H., J. Y. Choi, S.-J. Lee, and S. H. Lee, 2017: Estimation of irrigation requirements for red pepper using soil moisture model with high resolution meteorological data. Journal of the Korean Society of Agricultural Engineers 59(5), 31-40. https://doi.org/10.5389/KSAE.2017.59.5.031
  30. So, Y., S. J. Lee, S. W. Choi, and S.-J. Lee, 2020: Construction of NCAM-LAMP precipitation and soil moisture database to support landslide prediction. Korean Journal of Agricultural and Forest Meteorology 22(3), 152-163. https://doi.org/10.5532/KJAFM.2020.22.3.152
  31. Son, B.-I., J.-K. Jung, and J.-H. Lee, 2014: Wing Morphs and Parasitism Rates of the Small Brown Planthopper, Laodelphax striatellus (Hemiptera: Delphacidae) in Korea. Korean journal of applied entomology 53, 497-501. https://doi.org/10.5656/KSAE.2014.11.0.064
  32. Stein, A. F., R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan, 2015: NOAA's HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bulletin of the American Meteorological Society 96, 2059-2077. https://doi.org/10.1175/BAMS-D-14-00110.1
  33. Turner, R., Y.-H. Song, and K.-B. Uhm, 1999: Numerical model simulations of brown planthopper Nilaparvata lugens and white-backed planthopper Sogatella furcifera (Hemiptera: Delphacidae) migration. Bulletin of Entomological Research 89(6), 557-568. https://doi.org/10.1017/S0007485399000711
  34. Vennila, S., S. Nisar, A. Islam, M. N. Bhat, S. Sharma, P. S. Sarao, Anandhi P., M. Srinivasa rao and M. Prabhakar, 2021: Future scenarios of rice brown plant hopper nilaparvata lugens (stal.) under changing climate. Journal of Agrometeorology 23(1), 74-81. https://doi.org/10.54386/jam.v23i1.91
  35. Walters, R. J., M. Hassall, M. G. Telfer, G. M. Hewitt, J. P. Palutikof, 2006: Modelling dispersal of a temperate insect in a changing climate. Proceeding of Royal Society B: Biological Sciences 273, 2017-2023. https://doi.org/10.1098/rspb.2006.3542
  36. Wang, Z., A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, 2004: Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Process 13, 600-612. https://doi.org/10.1109/TIP.2003.819861
  37. Whitehorn, P. R., S. O'Connor, F. L. Wackers, D. Goulson, 2012: Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 336, 351-352. https://doi.org/10.1126/science.1215025
  38. Yoo, B. H., J. Kim, B.-W. Lee, G. Hoogenboom, and K. S. Kim, 2020: A surrogate weighted mean ensemble method to reduce the uncertainty at a regional scale for the calculation of potential evapotranspiration. Scientific Reports 10, 870. https://doi.org/10.1038/s41598-020-57466-0
  39. Yoo, B. H., K. S. Kim and J. Lee, 2019: The use of MODIS atmospheric products to estimate cooling degree days at weather stations in South and North Korea. Korean Journal of Agricultural and Forest Meteorology 21(2), 97-109. https://doi.org/10.5532/KJAFM.2019.21.2.97