• 제목/요약/키워드: Trajectory Following

검색결과 179건 처리시간 0.024초

The problem of stability and uniform sampling in the application of neural network to discrete-time dynamic systems

  • Eom, Tae-Dok;Kim, Sung-Woo;Park, kang-bark;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.119-122
    • /
    • 1995
  • Neural network has found wide applications in the system identification, modeling, and realization based on its function approximation capability. THe system governe dby nonlinear dynamics is hard to be identified by the neural network because there exist following difficulties. FIrst, the training samples obtained by the stae trajectory are apt to be nonuniform over the region of interest. Second, the system may becomje unstable while attempting to obtain the samples. This paper deals with these problems in discrete-time system and suggest effective solutions which provide stability and uniform sampliing by the virtue of robust control theory and heuristic algorithms.

  • PDF

퍼지추론기반 센서융합 이동로봇의 장애물 회피 주행기법 (Fuzzy Inference Based Collision Free Navigation of a Mobile Robot using Sensor Fusion)

  • 진태석
    • 한국산업융합학회 논문집
    • /
    • 제21권2호
    • /
    • pp.95-101
    • /
    • 2018
  • This paper presents a collision free mobile robot navigation based on the fuzzy inference fusion model in unkonown environments using multi-ultrasonic sensor. Six ultrasonic sensors are used for the collision avoidance approach where CCD camera sensors is used for the trajectory following approach. The fuzzy system is composed of three inputs which are the six distance sensors and the camera, two outputs which are the left and right velocities of the mobile robot's wheels, and three cost functions for the robot's movement, direction, obstacle avoidance, and rotation. For the evaluation of the proposed algorithm, we performed real experiments with mobile robot with ultrasonic sensors. The results show that the proposed algorithm is apt to identify obstacles in unknown environments to guide the robot to the goal location safely.

PUMA형 로보트 머니플레이터의 강인한 위치/힘 혼합제어 (Robust Hybrid Position/Force Control of a PUMA-Like Robot Manipulator)

  • 박재욱;이건복
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 추계학술대회 논문집 학회본부
    • /
    • pp.575-578
    • /
    • 1995
  • In general, the control of robot manipulator is classified into position control and force control. Position controllers give adequate performance when a manipulator is following a trajectory through space and end-effector has no contact with environment. However for most tasks performed by robot manipulator in industry, contact is made between the end-effector and manipulator's environment, so position control may not suffice. The objective of this study is to control both position of a manipulator and the contact forces generated at the hand by using a conceptually simple control law. Position and force control problem is decoupled into subtasts via taskspace formulation and inverse dynamics. Then, the position controllers are designed for the task space variable which represent tangent motion and the forte controllers are designed for the lash space variables which represent normal force.

  • PDF

벽면분무충돌모델의 개발과 평가 (Development and Assessment of Wall Spray Impaction Model)

  • 박권하
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1996년도 춘계 학술대회논문집
    • /
    • pp.137-142
    • /
    • 1996
  • A new wall impaction model for spray and its assessment are described in this paper. The gas phase is modelled in terms of the Eulerian continuum conservation equations of mass, momentum, energy and fuel vapour fraction. The liquid phase is modelled following the discrete droplet model approach. The droplet parcel contains many thousands of drops assumed to have the same size, temperature and velocity components. The droplet parcel equations of trajectory, momentum, mass and energy are written in Lagrangian form. The new drop-wall interaction model is proposed, which is based on experimental investigations on individual drops, and it is applied for the general non-orthogonal gird. The model is then assessed through comparison with experiments over a wide range of test conditions of sprays. The results are in good agreement with experimental data.

  • PDF

추정을 이용한 재진입 궤적의 정상상태 오차감소 (Reduction of Steady-State Error Using Estimation for Re-Entry Trajectory)

  • 박수홍;이대우
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2001년도 추계학술대회 논문집(Proceeding of the KOSME 2001 Autumn Annual Meeting)
    • /
    • pp.130-134
    • /
    • 2001
  • In the re-entry control system, errors apt to induce because the time derivative of drag acceleration is analytically estimated. Still more, the difficulty of estimation of the exact drag coefficient in hypersonic velocity and the nun-reality of the scale height cause a steady-state drag error. This paper proposes the additional method of the disturbance observer. This reduces the steady-state drag error according to the following series. First, this method estimates a error in drag acceleration time derivative by the analytic calculation and then creates the new drag acceleration time derivative using the estimated error. The performance of the re-entry control system is verified about 32 reference trajectories.

  • PDF

Practical Ultraprecision Positioning of a Ball Screw Mechanism

  • Sato, Kaiji;Maeda, Guilherme Jorge
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권2호
    • /
    • pp.44-49
    • /
    • 2008
  • This paper describes the problem of ultraprecision positioning with a ball screw mechanism in the microdynamic range, along with its solution. We compared the characteristics of two ball screw mechanisms with different table masses. The experimental results showed that the vibration resulting from the low stiffness of the ball screw degraded the positioning performance in the microdynamic range for the heavyweight mechanism. The proposed nominal characteristic trajectory following (NCTF) controller was designed for ultra precision positioning of the ball screw mechanism. The basic NCTF control system achieved ultra precision positioning performance with the lightweight mechanism, but not with the heavyweight mechanism. A conditional notch filter was added to the NCTF controller to overcome this problem. Despite the differences in payload and friction, both mechanisms then showed similar positioning performance, demonstrating the high robustness and effectiveness of the improved NCTF controller with the conditional notch filter. The experimental results demonstrated that the improved NCTF control system with the conditional notch filter achieved ultra precision positioning with a positioning accuracy of better than 10 nm, independent of the reference step input height.

도시환경 매핑 시 SLAM 불확실성 최소화를 위한 강화 학습 기반 경로 계획법 (RL-based Path Planning for SLAM Uncertainty Minimization in Urban Mapping)

  • 조영훈;김아영
    • 로봇학회논문지
    • /
    • 제16권2호
    • /
    • pp.122-129
    • /
    • 2021
  • For the Simultaneous Localization and Mapping (SLAM) problem, a different path results in different SLAM results. Usually, SLAM follows a trail of input data. Active SLAM, which determines where to sense for the next step, can suggest a better path for a better SLAM result during the data acquisition step. In this paper, we will use reinforcement learning to find where to perceive. By assigning entire target area coverage to a goal and uncertainty as a negative reward, the reinforcement learning network finds an optimal path to minimize trajectory uncertainty and maximize map coverage. However, most active SLAM researches are performed in indoor or aerial environments where robots can move in every direction. In the urban environment, vehicles only can move following road structure and traffic rules. Graph structure can efficiently express road environment, considering crossroads and streets as nodes and edges, respectively. In this paper, we propose a novel method to find optimal SLAM path using graph structure and reinforcement learning technique.

비정돈 환경의 표면 소독을 위한 실현성 예측 기반의 장애물 제거 계획법 및 접촉식 방역 로봇 시스템 (Feasibility Prediction-Based Obstacle Removal Planning and Contactable Disinfection Robot System for Surface Disinfection in an Untidy Environment)

  • 강준수;이인제;정완균;김기훈
    • 로봇학회논문지
    • /
    • 제16권3호
    • /
    • pp.283-290
    • /
    • 2021
  • We propose a task and motion planning algorithm for clearing obstacles and wiping surfaces, which is essential for surface disinfection during the pathogen disinfection process. The proposed task and motion planning algorithm determines task parameters such as grasping pose and placement location during the planning process without using pre-specified or discretized values. Furthermore, to quickly inspect many unit motions, we propose a motion feasibility prediction algorithm consisting of collision checking and an SVM model for inverse mechanics and self-collision prediction. Planning time analysis shows that the feasibility prediction algorithm can significantly increase the planning speed and success rates in situations with multiple obstacles. Finally, we implemented a hierarchical control scheme to enable wiping motion while following a planner-generated joint trajectory. We verified our planning and control framework by conducted an obstacle-clearing and surface wiping experiment in a simulated disinfection environment.

GLOBAL VORTICITY EXISTENCE OF A PERFECT INCOMPRESSIBLE FLUID IN B0∞,1(ℝ2)∩Lp(ℝ2)

  • Pak, Hee Chul;Kwon, Eun-Jung
    • 충청수학회지
    • /
    • 제23권2호
    • /
    • pp.271-277
    • /
    • 2010
  • We prove the global (in time) vorticity existence for the 2-D Euler equations of a perfect incompressible fluid in $B^0_{{\infty},1}({\mathbb{R}}^2){\cap}L^p({\mathbb{R}}^2)$ with 1 < p < 2. Moreover, we prove that the particle trajectory map X(x, t) satisfies the following estimate: for some positive constant C $${\parallel}X^{\pm1}(\cdot,\;t)-id(\cdot){\parallel}_{B^1_{\infty,1}}{\leq}Ce^{e^{Ct}}$$, where id represents the identity map on ${\mathbb{R}}^2$.

저궤도 위성통신의 활용과 주요 사업자의 서비스 전개 현황 (Low Earth Orbit Satellite Communications, Applications and Major Operators' Service Deployments)

  • 최가은;송영근
    • 전자통신동향분석
    • /
    • 제39권3호
    • /
    • pp.36-47
    • /
    • 2024
  • Low Earth Orbit (LEO) satellite communications has become a crucial technology for next-generation communication networks owing to its hyperconnectivity capabilities. We examine the progress and application areas of LEO satellite communication services. The LEO satellite communication industry has transitioned from being predominantly driven by governments and institutions to being led by the private sector, following the trajectory of the NewSpace movement. Leading corporations such as SpaceX Starlink and Eutelsat OneWeb are deploying LEO satellite networks to offer internet services, while Telesat is preparing to establish its satellite communication network. LEO satellite communications is expected to have a major impact on various sectors of society, particularly for upcoming sixth-generation services. Therefore, the South Korean government must promptly formulate policy support strategies aimed at invigorating the LEO satellite communication industry. This can be achieved through initiatives such as bolstering research and development and extending corporate assistance.