• Title/Summary/Keyword: Training Algorithm

Search Result 1,881, Processing Time 0.028 seconds

Radial Basis Function Neural Networks (RBFNN) and p-q Power Theory Based Harmonic Identification in Converter Waveforms

  • Almaita, Eyad K.;Asumadu, Johnson A.
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.922-930
    • /
    • 2011
  • In this paper, two radial basis function neural networks (RBFNNs) are used to dynamically identify harmonics content in converter waveforms based on the p-q (real power-imaginary power) theory. The converter waveforms are analyzed and the types of harmonic content are identified over a wide operating range. Constant power and sinusoidal current compensation strategies are investigated in this paper. The RBFNN filtering training algorithm is based on a systematic and computationally efficient training method called the hybrid learning method. In this new methodology, the RBFNN is combined with the p-q theory to extract the harmonics content in converter waveforms. The small size and the robustness of the resulting network models reflect the effectiveness of the algorithm. The analysis is verified using MATLAB simulations.

The speed control of induction motor using neural networks (신경회로망을 이용한 유도전동기 속도제어)

  • 김세찬;원충연
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.1
    • /
    • pp.42-53
    • /
    • 1996
  • The paper presents a speed control system of vector controlled induct- ion motor using neural networks. The main feature of proposed speed control system is a Neural Network Controller(NNC) which supplies torque current to induction motor and Neural Network Emulator(NNE) which captures the forward dynamics of induction motor. A back propagation training algorithm is employed to train the NNE and NNC. In order to determine the NNC output error, plant(induction motor) output error can be back propagated through the NNE. The NNC and NNE for speed control of vector controlled induction motor is carried out by TMS320C30 DSP and IGBT current regulated PWM inverter. Through computer simulation and experimental results, it is verified that proposed speed control system is robust to the load variation. (author). refs., figs.

  • PDF

Forecasting of Urban Daily Water Demand by Using Backpropagation Algorithm Neural Network (역전파 알고리즘을 이용한 상수도 일일 급수량 예측)

  • Rhee, Kyoung Hoon;Moon, Byoung Seok;Oh, Chang Ju
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.4
    • /
    • pp.43-52
    • /
    • 1998
  • The purpose of this study is to establish a method of estimating the daily urban water demend using Backpropagation algorithm is part of ANN(Artificial Neural Network). This method will be used for the development of the efficient management and operations of the water supply facilities. The data used were the daily urban water demend, the population and weather conditions such as treperarture, precipitation, relative humidity, etc. Kwangju city was selected for the case study area. We adjusted the weights of ANN that are iterated the training data patterns. We normalized the non-stationary time series data [-1,+1] to fast converge, and choose the input patterns by statistical methods. We separated the training and checking patterns form input date patterns. The performance of ANN is compared with multiple-regression method. We discussed the representation ability the model building process and the applicability of ANN approach for the daily water demand. ANN provided the reasonable results for time series forecasting.

  • PDF

Indirect adaptive control of nonlinear systems using Genetic Algorithm based Dynamic neural network (GA 학습 방법 기반 동적 신경 회로망을 이용한 비선형 시스템의 간접 적응 제어)

  • Cho, Hyun-Seob;Oh, Myoung-Kwan
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.11a
    • /
    • pp.81-84
    • /
    • 2007
  • In this thesis, we have designed the indirect adaptive controller using Dynamic Neural Units(DNU) for unknown nonlinear systems. Proposed indirect adaptive controller using Dynamic Neural Unit based upon the topology of a reverberating circuit in a neuronal pool of the central nervous system. In this thesis, we present a genetic DNU-control scheme for unknown nonlinear systems. Our method is different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its training.

  • PDF

Fraud Detection in E-Commerce

  • Alqethami, Sara;Almutanni, Badriah;AlGhamdi, Manal
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.200-206
    • /
    • 2021
  • Fraud in e-commerce transaction increased in the last decade especially with the increasing number of online stores and the lockdown that forced more people to pay for services and groceries online using their credit card. Several machine learning methods were proposed to detect fraudulent transaction. Neural networks showed promising results, but it has some few drawbacks that can be overcome using optimization methods. There are two categories of learning optimization methods, first-order methods which utilizes gradient information to construct the next training iteration whereas, and second-order methods which derivatives use Hessian to calculate the iteration based on the optimization trajectory. There also some training refinements procedures that aims to potentially enhance the original accuracy while possibly reduce the model size. This paper investigate the performance of several NN models in detecting fraud in e-commerce transaction. The backpropagation model which is classified as first learning algorithm achieved the best accuracy 96% among all the models.

Simulator-Driven Sieving Data Generation for Aggregate Image Analysis

  • DaeHan Ahn
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.3
    • /
    • pp.249-255
    • /
    • 2024
  • Advancements in deep learning have enhanced vision-based aggregate analysis. However, further development and studies have encountered challenges, particularly in acquiring large-scale datasets. Data collection is costly and time-consuming, posing a significant challenge in acquiring large datasets required for training neural networks. To address this issue, this study introduces a simulation that efficiently generates the necessary data and labels for training neural networks. We utilized a genetic algorithm (GA) to create optimized lists of aggregates based on the specified values of weight and particle size distribution for the aggregate sample. This enabled sample data collection without conducting sieving tests. Our evaluation of the proposed simulation and GA methodology revealed errors of 1.3% and 2.7 g for aggregate size distribution and weight, respectively. Furthermore, we assessed a segmentation model trained with data from the simulation, achieving a promising preliminary F1 score of 78.18 on the actual aggregate image.

The Derivation of a New Blind Equalization Algorithm

  • Kim, Young-Kyun;Kim, Sung-Jo;Kim, Min-Taig
    • ETRI Journal
    • /
    • v.18 no.2
    • /
    • pp.53-60
    • /
    • 1996
  • Blind equalization is a technique for adaptive equalization of a communication channel without the aid of training sequences. This paper proposes a new blind equalization algorithm. The advantage of the new algorithm is that it has the lower residual error than the GA (proposed by Godard) and Sign_GA (proposed by Weerackody et al.). The superior performance of the proposed algorithm is illustrated for the 16-QAM signal constellation. A Rummler channel model is assumed as a transmission medium. The performance of the proposed algorithm is compared to the GA, Sign_GA and Stop & Go Algorithm (SGA). The simulation results demonstrate that an improvement in performance is achieved with the proposed equalization algorithm.

  • PDF

An application of neural network to autopilot design (신경회로망을 이용한 자동조종장치 설계)

  • 유재종;송찬호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.619-623
    • /
    • 1993
  • In this paper, a neural network is appled to design a lateral autopilot for airplanes. Linearized lateral dynamics is used in training the neural network controller and verifying the performance as well. To train the neural network, back propagation algorithm is used. In this training, no information about the dynamics to be controlled except sign and rough magnitude of control derivatives is needed. It is shown by computer simulations that the performance and stability margin are satisfactory.

  • PDF

Maximum Likelihood Training and Adaptation of Embedded Speech Recognizers for Mobile Environments

  • Cho, Young-Kyu;Yook, Dong-Suk
    • ETRI Journal
    • /
    • v.32 no.1
    • /
    • pp.160-162
    • /
    • 2010
  • For the acoustic models of embedded speech recognition systems, hidden Markov models (HMMs) are usually quantized and the original full space distributions are represented by combinations of a few quantized distribution prototypes. We propose a maximum likelihood objective function to train the quantized distribution prototypes. The experimental results show that the new training algorithm and the link structure adaptation scheme for the quantized HMMs reduce the word recognition error rate by 20.0%.

Optimal Design of Nonlinear Structural Systems via EFM Based Approximations (진화퍼지 근사화모델에 의한 비선형 구조시스템의 최적설계)

  • 이종수;김승진
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.122-125
    • /
    • 2000
  • The paper describes the adaptation of evolutionary fuzzy model ins (EFM) in developing global function approximation tools for use in genetic algorithm based optimization of nonlinear structural systems. EFM is an optimization process to determine the fuzzy membership parameters for constructing global approximation model in a case where the training data are not sufficiently provided or uncertain information is included in design process. The paper presents the performance of EFM in terms of numbers of fuzzy rules and training data, and then explores the EFM based sizing of automotive component for passenger protection.

  • PDF