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Abstract

Advancements in deep learning have enhanced vision-based aggregate analysis. However, further development and studies have

encountered challenges, particularly in acquiring large-scale datasets. Data collection is costly and time-consuming, posing a

significant challenge in acquiring large datasets required for training neural networks. To address this issue, this study

introduces a simulation that efficiently generates the necessary data and labels for training neural networks. We utilized a

genetic algorithm (GA) to create optimized lists of aggregates based on the specified values of weight and particle size

distribution for the aggregate sample. This enabled sample data collection without conducting sieving tests. Our evaluation of

the proposed simulation and GA methodology revealed errors of 1.3% and 2.7 g for aggregate size distribution and weight,

respectively. Furthermore, we assessed a segmentation model trained with data from the simulation, achieving a promising

preliminary F1 score of 78.18 on the actual aggregate image.

Index Terms: Aggregate Analysis, Data Generation, Aggregate Detection, Aggregate Segmentation, Genetic Algorithm

I. INTRODUCTION

The emergence of deep learning has precipitated rapid

advancements in the various industries over a short period.

This evolution extended its benefits to architecture and led to

the development of various innovative applications. In partic-

ular, the aggregate image analysis significantly enhanced the

quality assessment of cement and concrete. This technology

facilitates a direct approach to image analysis using a camera,

thereby eliminating the need for manual measurements [1-4].

Despite these advancements, deep-learning-based applications

in aggregate inspection face challenges in accelerating research

and service development, primarily because of the necessity

of compiling large-scale datasets for training.

The training data essential for conducting aggregate image

analysis demands aggregate images and their specific attri-

butes, such as particle size distribution (PSD) and weight, as

both input and output for the learning models. Additionally,

segmentation models that require meticulous labeling efforts

to segregate each aggregate gravel individually can be

employed for a detailed analysis of aggregates. To achieve

this, the conventional data collection method is handled in

the following sequence: first, sample preparation and raw

image capture; second, aggregate analysis via an actual test;

and finally, recording and storing the analysis results. Large-

scale data collection faces time and cost challenges, as the

entire process—from preparing samples to recording results

—is labor-intensive, time-consuming, and costly at every

stage. Additionally, for segmentation, manual labor is required

to categorize images captured by humans using a direct

masking technique, which also significantly increases both

time and cost. The second issue is the diversity of the aggre-

gate labels or attributes. Conventional methods do not sup-

port the pre-assignment of labels to samples and only permit
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random sample collection, making it difficult to gather data

with a diverse range of labels and produce the desired labels.

In particular, aggregate samples collected from the same

location tend to have similar labels, making imbalanced

labels unavoidable.

To address these challenges, we introduce a simulation-

driven approach for collecting a large-scale dataset, as illus-

trated in Fig. 1, which is designed to emulate aggregate

images with characteristics that correspond to user-defined

labels in the simulation, collecting three key elements: label,

aggregate images corresponding to the label, and aggregate

images for the segmentation task. Consequently, this method

enables the automated generation of significant volumes of

aggregate data and does not require manual intervention.

Moreover, to capture an aggregate image corresponding to

the desired label, we propose an aggregate generation model

using a genetic algorithm (GA) [5]. For instance, when the

model receives user-defined labels regarding the PSD and

total weight of the aggregate, the GA model generates a list

of aggregates that align with the aggregate's specific labels

to be produced. Subsequently, the simulation uses the list to

emulate the aggregate, as guided by the list. This approach

facilitates the generation of a diverse aggregate dataset fea-

turing the desired characteristics. Additionally, to acquire a

ground-truth image for segmentation, we designed an outline

shader to emphasize the edge of the aggregate grain. This

process enables the extraction of edge information for seg-

mentation, thereby eliminating the need for human effort.

This study proposes a simulation-based approach for col-

lecting large-scale datasets. The approach was designed to

emulate the characteristics of a set of images according to

custom labels, collecting labels, corresponding set images,

and setting images for segmentation tasks. This method

allows for the automatic generation of large-scale datasets

without manual intervention.

In summary, this study makes three primary contributions:

1) we propose a simulation-based large-scale dataset collec-

tion method for vision-based aggregate analysis; 2) we intro-

duce an aggregate-set generation model using a genetic

algorithm; and 3) we introduce a ground-truth image genera-

tion method for segmentation tasks.

II. BACKGROUND

A. Sieve Analysis of Aggregate

The PSD is crucial in determining the physical properties

of concrete mixtures, such as their strength, durability, and

stability, which are crucial for the construction industry.

Achieving the appropriate PSD is essential for ensuring the

desired strength and workability of concrete and asphalt

compositions [6,7]. Sieving is one of the most common

methods used to assess PSD [8,9,10]. This process involves

passing the aggregate through a series of sieves that have

progressively smaller mesh sizes, as illustrated in Fig. 2 The

amount of aggregate that each sieve retains is weighed, and

from these measurements, a PSD curve is generated. This

curve provides a detailed analysis of the aggregate granular-

ity, allowing engineers to accurately derive the composition

of aggregates. Based on this distribution, predictions can be

made regarding the strength and durability of the aggregates.

Understanding these properties is fundamental to optimizing

the quality and enhancing the performance and longevity of

construction materials.

B. Vision-based Particle Size Distribution Analysis

Conducting a traditional sieve analysis, a method that

necessitates drying, washing, and measuring as per standards

[9,10], is a resource-intensive task that is costly and time-

consuming. The advent of modern computer vision tech-

Fig. 1. The processes of simulation-driven aggregate data generation and the collected datasets.

Fig. 2. Particle size distribution analysis by sieving.



Simulator-Driven Sieving Data Generation for Aggregate Image Analysis

251 http://jicce.org

niques has transformed aggregate analysis by providing real-

time testing capabilities and significantly reducing manual

effort, duration, and cost, thereby offering a more efficient

and precise method for evaluating PSD.

An application based on computer vision for aggregate

analysis was developed by analyzing 2D images captured by

cameras. In previous studies [1-4], models utilizing convolu-

tional layers to extract various features from aggregate

images were proposed. This model presents an approach for

inferring the characteristics of aggregates by mapping the

overall characteristics of aggregate images to the actual dis-

tribution values of the aggregates. To enhance the perfor-

mance of aggregate analysis, models incorporating segmentation

techniques such as the Canny and Laplacian filters [11,12]

have been proposed, which separate individual aggregate

gravels in the image and analyze them based on a combina-

tion of their characteristics. Recently, there has been a trend

toward improved performance using deep-learning-based

segmentation models [13,14].

Despite these advancements, computer vision-based solu-

tions for aggregate analysis remain limited, primarily because

of the challenge of the large-scale dataset collection required

for training deep neural networks. The conventional data col-

lection process requires manual effort for edge delineation,

culminating in considerable time and cost expenditure. Fur-

thermore, the inability to predefine data labels renders the

collection of diverse datasets more challenging. To address

these obstacles, our primary objective is to establish a simu-

lation environment capable of generating large-scale datasets

with diverse labels. This facilitates the training of deep-

learning-based segmentation models, overcoming the limita-

tions of current data collection and preparation methods.

III. AGGEGATE DATA GENERATION

A. System Overview for Aggregate Data Generator

For a vision-based aggregate analysis, the dataset must

contain both an image of the aggregate sample and its corre-

sponding test result, which is referred to as a label. Addition-

ally, for segmentation, an image that delineates the highlighted

outlines is essential. Considering these prerequisites, we pro-

pose a simulation-based approach to generate an aggregate

dataset, as illustrated in Fig. 1. By leveraging a virtual

engine to mirror the real world, this approach facilitates the

rapid and accurate acquisition of diverse data, surpassing the

efficacy of manual testing conducted by humans.

Following prior studies [1,2,3], we designed the simulation

environment to include a plate measuring 35 cm × 30 cm ×

10 cm, positioned under a camera at a height of 50 cm, spe-

cifically designed to capture aggregate images. The design of

the aggregates generated in the simulation environment is

referenced in [15]. Once the desired particle size distribution

and total weight of the aggregate are input into the proposed

simulation, as shown in Fig. 1(a), the GA model generates a

list of aggregates to be created within the simulation, as

shown in Fig. 1(b). The simulation then sequentially gener-

ates aggregates in the virtual environment according to this

list. After the aggregate generation is complete, the pair of

generated aggregate images captured by the virtual camera

and the input characteristics for the aggregate are collected.

These processes are illustrated in Fig. 1(c). Additionally, an

outline shader was applied to the generated aggregate images

to produce images with emphasized outlines, which were

stored as labels for segmentation tasks, as shown in Fig. 1(d).

B. Data Generation Using Genetic Algorithm

The simulation aims to produce aggregates to obtain data

that adhere to the desired criteria, such as the distribution

and weight value. Hence, merely generating aggregates at

random is insufficient, and an optimization process is essen-

tial. To accomplish this, we implemented a genetic algorithm

as illustrated in Fig. 3. The overall processes reflect the basic

GA, which consists of initialization, evaluation, selection,

crossover, and mutation. We customized the algorithm to address

our specific problem and organized it as follows. Initially,

we introduced each individual, also known as a chromo-

some, to represent a possible solution, with further details

discussed in Section III.B.1. Second, we developed a fitness

function to evaluate and select a well-defined chromosome

for the next generation, as detailed in Section III.B.2.

Finally, we implemented a crossover strategy that addressed

the overweight and underweight issues encountered during

the crossover. for which solutions are presented in Section

III.B.3.

1) Chromosome Generation for Genetic Algorithm

A chromosome, which was the target to be optimized by

the GA model, was designed to represent a predefined list of

aggregates created in the simulation. Consequently, a gene in

the chromosome represents gravel and contains characteris-

tics, such as shape, size, volume, and intended placement, to

be created in the simulation.

Fig. 4 depicts the chromosome generation process. Initially,

a gene that symbolizes aggregate gravel in the simulation is

Fig. 3. Overall process of genetic algorithm for simulation driven aggregate

data generation.
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randomly structured as a vector R1×d, encompassing the

essential attributes of the aggregate, such as grain type, size,

weight, and location, to be emulated in the simulation. The

newly formed genes were appended to the last chromosome

index. This cycle is repeated until the cumulative weight of

the chromosome aligns with the desired weight criterion pre-

determined by the user. Consequently, all chromosomes were

optimized to the desired weight values during the initializa-

tion process. The comprehensive steps involved in chromo-

some generation are described in Algorithm 1.

2) Fitness Function

The fitness function is designed to produce aggregate lists

that satisfy both the desired weight and particle size distribu-

tion curve criteria. To achieve this goal, we introduced Eq.

(1) to serve as the fitness function.

Fitness = (1 − W)2 + 1/n (1 − Dn)
2 (1)

The equation comprises two components: an evaluation of

the weight condition and an assessment of the particle size

distribution curve. For weight condition evaluation, the fit-

ness function calculates the ratio between the total weight

WT of the generated aggregates and the desired weight WD.

The desired weight represents a predetermined parameter,

whereas the total weight is determined by aggregating the

weight of each gene within a chromosome. The formula is as

follows:

W = WT / WD (2)

Thus, as the total weight of the aggregates to be generated in

the simulation approximated the desired weight, the resulting

value closed 1.0. Based on this fact, the fitness for the total

weight can be evaluated by the difference between 1.0 and

the ratio W. Conversely, the second component of the pro-

posed Eq. (1) assesses the extent to which the particle size

distribution within a chromosome aligns with the specified

desired distribution, as calculated using Eq. (3).

(3)

Dn represents the fitness associated with the distribution of

aggregate gravel passing through an n-sized sieve, and dn sig-

nifies the percentile of particles passing through the n-sized

sieve, calculated by aggregating particles within a chromo-

some.  represents the desired distribution value for each

sieve. The constant a serves as a regularization factor to

adjust the strictness of the fitness function, while γ (≤1.0) is

another constant that modulates a value. During the GA itera-

tion, the value of a is updated via a  a, indicating a grad-

ual decrease towards zero with each GA cycle. The fitness

function for the distribution was formulated by averaging the

values for each sieve.

Finally, the outcome of the fitness function will approach

0.0 when a chromosome precisely aligns with the desired

weight and distribution. Subsequently, using this fitness

function, the GA model selects chromosomes in a rank-

based manner.

3) Crossover Process

The crossover stage involves creating a new chromosome

by combining two or more existing chromosomes. In our GA

procedure, this process can introduce variations in weight as

the crossover operation is conducted without considering the

weight factor and is performed randomly. To address the

total weight discrepancy post-crossover, we introduce the

post-processing method depicted in Fig. 5, which is detailed

in Algorithm 2. This method accounts for two scenarios, in

which the resulting chromosome is either over or under the

desired weight. In cases of overweight, a reduction was

applied to align with the target weight. Because the weight

needs to be reduced, genes are deleted individually starting

from the last index of the chromosome to decrease the

weight. If the weight value reaches the set value, the process

is halted, and the result is output as a new chromosome.

Conversely, for chromosomes falling under weight, addi-

tional genes were incorporated using the chromosome gener-

ator described in the Algorithm. 1, until the weight

requirement was satisfied. Consequently, this approach guar-

antees that all chromosomes consistently match the desired

weight value throughout the GA process.


i 1=

n

D
n

d
n
d
ˆ
n  =

d
ˆ
n

Fig. 4. Chromosome generation process.
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C. Aggregate Image for Segmentation

For effective image segmentation, a sufficient number of

target images, specifying how the input images should be seg-

mented, must be provided to train the model. However, gener-

ating a segmented target image is a laborious, time-, and cost-

intensive task. This challenge can be addressed in a simula-

tion by emphasizing the edges of objects, using a technique

known as the outline shader. The outline shader is a shading

technique used to highlight the outlines of 2D or 3D objects.

This method achieves an edge-highlighting effect by render-

ing a slightly expanded version of the original object's mesh

and then rendering the original object on top. The process of

creating expanded object Oe can be expressed mathematically

as follows:

Oe + = vertex of Oe + α (5)

By duplicating the original object to create a new object,

and obtaining the values of the vertices of the object mesh,

an expanded mesh can be obtained by slightly moving each

vertex in the direction of the normal vector. Applying a sin-

gle color to the expanded object and rendering it before the

original object causes the two objects to overlap with the

expanded object appearing behind the original object. We

adopted this method and designed a simulation to easily

obtain aggregate images for segmentation labels from the

original aggregate images by applying this technique.

IV. EXPERIMENTS

This study aims to generate aggregates in a simulation that

meets the user’s desired specifications, such as total weight

and particle size distribution. To achieve this goal, we present

a GA model that creates a list of aggregates to be generated in

a simulation while satisfying the user specifications. There-

fore, the evaluation of this model involved a comparison

between the user requirements and the characteristics of the

aggregates produced by the model. Specifically, the model

was evaluated based on the accuracy of how the characteris-

tics of aggregates obtained through the model matched the

user’s requirements. Fig. 6 shows the accuracy obtained while

optimizing the list of aggregates to be generated when the

requirements are given. Our model consistently meets the

required weight value during the generation and crossover

processes. Performance exceeds 98.2% from the initial itera-

tions and remains stable with further iterations. The simula-

tion showed a difference of 2.7 g in weight. It means an error

of less than 1.0% (2.7 g/5 Kg). For particle size distribution,

it initially showed considerably low performance because it

was randomly set, but as iterations proceeded, it approached

the requirement conditions. Figs. 6 and 7 present the compari-

son results between the user requirements for the ground truth

(PSD) and the distribution generated by the model. As shown

in the results, there is a high degree of alignment between the

two outcomes, with an evaluation showing a performance

score of up to 98.7%. These results demonstrate that we can

obtain an aggregate image in the simulation that matches the

user requirements.

Fig. 8 demonstrates the proposed simulation and applica-

tion of outline shading for segmentation. Because all the

aggregates can be identified and controlled in the simulation,

it is possible to accurately emphasize the outline for all the

aggregates. Based on this, it is clear that the proposed model

can contribute to minimizing human effort and time costs.

The datasets generated by the simulation can help train

deep neural networks and are particularly effective for seg-

mentation models. To demonstrate the feasibility of the data-

set, we preliminarily evaluate the segmentation model [14],

as shown in Fig. 9. The model used in this experiment was

trained solely on the generated datasets and not on actual

aggregate datasets and was applied to real aggregate data for

evaluation. The evaluation metric used was the F1 score,

which assessed how well the segmentation lines (i.e., the

Fig. 5. Crossover strategy for maintaining the weight value.
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outlines of the objects) were created. The results showed that

the performance improved as more virtually generated data

were used, achieving a maximum F1 score of 78.18. Addi-

tionally, the accuracy of the aggregate recognition based on

the segmentation results was evaluated to determine how

well the aggregates could be recognized. This evaluation

measures the number of aggregates that can be recognized

using an object-recognition algorithm [16,17]. The evalua-

tion results proved that, at an F1 score of 78.18, the object

recognition accuracy was 96.53%, demonstrating that nearly

all objects could be recognized. This evaluation sufficiently

showed the possibility of analyzing real aggregates, even

when training was conducted using simulated aggregates.

In this discussion, we provide a simulation for collecting

aggregate analysis data based on image processing. How-

ever, additional tasks are required to improve the perfor-

mance. For example, incorporating diverse stone modeling

techniques and high-resolution images for meshes can

enhance the quality of the dataset. Furthermore, optimizing

the neural network performance with the generated dataset

requires consideration of variables, such as the location and

intensity of the light source, camera noise, and other envi-

ronmental factors, all of which can be readily simulated.

Future evaluations will focus on the impact of texture resolu-

tion, lighting conditions, plate size, and other pertinent exter-

nal factors on the segmentation performance. Advancing the

current gravel-generation algorithm to ensure data diversity

can significantly boost the effectiveness of the simulations.

VI. CONCLUSIONS

This study introduced an innovative strategy for gathering

large-scale datasets for vision-based deep learning models

for aggregate analysis. The simulator designed for this pur-

pose efficiently creates aggregates within a virtual setting

and instantly provides reference data for segmentation, dras-

Fig. 6. Evaluation result of aggregate generation of the proposed GA model.

Fig. 7. Comparison between the ground truth and the particle size

distribution of a sample generated by the proposed model.

Fig. 8. Demonstration of outline shader for segmentation.

Fig. 9. Evaluation of a segmentation model trained by the generated

samples.
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tically diminishing the resources and time required for data

acquisition. A GA was employed to enhance the precision of

the simulated data and ensure that they met the specific

weight and particle size distribution criteria for the aggre-

gates. The method has a remarkably low error rate, achiev-

ing 2.7 g and 98.7% for the weight value and particle size

distribution, respectively. Additionally, the segmentation

model was trained and evaluated using data generated by the

simulation, resulting in an F1 score of 78.18 and an aggre-

gate detection accuracy of 96.53%, proving that the devel-

oped model can adequately analyze actual data.

The results obtained from this investigation offer substan-

tial support for the development and assessment of segmen-

tation models tailored for deep-learning-driven aggregate

analyses. Notably, the simulator delineated in this study is

invaluable for verifying the segmentation model performance

and identifying errors in 2D images, thereby enabling further

advancements in segmentation research.
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