• Title/Summary/Keyword: Train Propulsion System

Search Result 118, Processing Time 0.027 seconds

Suppression of the Disturbance Force in The Magnetically Levitated Train System Using Integral Sliding Mode Controller (자기부상열차 시스템에서 적분형 슬라이딩 모드 제어기를 이용한 부상억제력 제거)

  • Lee, Jun-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.722-726
    • /
    • 2007
  • In this paper we deal with a design of the integral sliding mode controller to suppress the disturbance force acting on the suspension system of the magnetically levitated train system. One of the important factors that cause the disturbance force acting on the suspension system comes from the low propulsion speed of linear induction motor. In this paper integral sliding mode controller is employed to reject the disturbance force produced by the propulsion system of the linear induction motor. In order to show the effectiveness of the designed controller a dynamic simulation is utilized and the sliding mode controller without integral compensator is compared with the proposed integral sliding mode controller to suppress the disturbance force.

  • PDF

The study of propulsion control system (추진제어장치 특성 연구)

  • Kwon Il-Dong;Kim Dong-Myung;Chung Eun-Sung;Lee Sang-Jun;Choi Jong-Muk
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.291-298
    • /
    • 2005
  • This paper describes the characteristic feather of propulsion system adopting mass production. The train formation is composed of 4 cars by 2 Motor cars and 2 Train cars. Acceleration rate must be 3.0 km/h/s or more when the car starts up to 35km/h by 16ton of passenger load. The system information supervision is easy because the system is controlled to perfect digital circuits, all information of an action is stored in a memory and is managed. The control system is composed of a fully digital circuit and a high level software such as C language. The DSP TMS320C31 is used for main processor and has the capability of 50MHz, 32bit floating point operation and has a C compiler. Therefore, the implementation of control algorithm and the change of function are easy. VVVF inverter using IGBT conducted variable combined test, environment test using chamber, interface test and field test etc.

  • PDF

A Study for Running Test Result of Train Powering/Braking Control by TCMS (TCMS에 의한 전동차 추진/제동 제어기술의 현차시험 결과 고찰)

  • 박성호;한정수;신광균;박계서
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.652-658
    • /
    • 2000
  • TCMS(Train Control & Management System) control monitor and test the main on-board equipments including propulsion/brake unit by the serial transmission line. TCMS reduces interface circuits and number of train lines by the software logic and utilizing serial communication method. This paper describes the method of powering and braking control by TCMS software logic, and the software logic is verified by running test at Seoul Subway Line# 6. By running test result, we can see TCMS successfully control Powering/Braking of train

  • PDF

Characteristic Analysis of Superconducting LSM for the Wheel-rail-guided Very High Speed Train according to Winding Method of the Ground 3-phase Coils (휠-레일 방식 초고속열차용 초전도 선형동기전동기의 지상권선 방식별 특성 분석)

  • Park, Chan-Bae;Lee, Byung-Song;Lee, Chang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1164-1169
    • /
    • 2014
  • Recently, an interest in a hybrid system combining only the merits of the conventional wheel-rail system and Maglev propulsion system is growing as an alternative to high-speed maglev train. This hybrid-type system is based on wheel-rail method, but it enables to overcome the speed limitation by adhesion because it is operated by a non-contact method using a linear motor as a propulsion system and reduce the overall construction costs by its compatibility with the conventional railway systems. Therefore, the design and characteristic analysis of a coreless-type superconducting Linear Synchronous Motor (LSM) for 600km/h very high speed railway system are conducted in this paper. The designed coreless-type superconducting LSMs are the distributed winding model, the concentrated 1 layer winding model and the concentrated 2 layer winding model, respectively. In addition, the characteristic comparison studies on each LSM are conducted.

Loss characteristic analysis of propulsion motor applied for high speed train (차세대 고속철도용 견인전동기 손실특성 해석)

  • Lee, Dong-Su;Kim, Shang-Hoon;Lee, Sang-Gon;Jung, Sang-Yong
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1376-1382
    • /
    • 2010
  • The propulsion Motor system has changed from the DC motor system to the induction motor system. Although the induction motor system has almost reached the stage of maturity, this system also need changed to the IPMSM system for direct drive without reduction gear. Thus, the IPMSM(Interior buried Permanent magnet synchronous Motor) has been adopted to meet the driving specification. In this paper, loss characteristic analysis of IPMSM has been performed using adopted F.E.M.

  • PDF

Technical specification of Electric Multiple Unit with Tilting Express (전기식 틸팅차량(TTX)의 구성 및 기술사양)

  • Han Seong-ho
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.30-33
    • /
    • 2004
  • This paper suggested that the technical specification of tilting train EMU for speed up on existing lines. High speed strategy of existing lines are the modification of railway system which are made on cant, lengths of transition curves, the catenary system and train system. Tilting technology is more useful a strategy for speed increases on existing lines with low investment needed. We performed a feasibility study which is considered out real track conditions and designed propulsion and braking system of tilting EMU system.

  • PDF

Core Technologies of Superconducting Magnet for High-speed Maglev and R&D Activities in Korea (초고속 Maglev용 초전도 마그넷 요소 기술 및 국내 연구 개발 현황)

  • Lee, Chang-Young;Kang, Bu-Byoung;Han, Young-Jae;Sim, Ki-Deok;Park, Dong-Keun;Ko, Tae-Kuk
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1454-1460
    • /
    • 2009
  • Ultra-speed tube train, which runs in vacuum atmosphere to overcome aero-dynamic dragging force, is considered as a high-speed ground transportation system to back up long-distance air travel. To realize the ultra-speed tube train, feasibility study of currently available Maglev technologies especially for propulsion and levitation system is needed. Propulsion by linear synchronous motor(LSM) and levitation by electro-dynamic suspension(EDS) which are utilized in the Japan's MLX system could be one of candidated technologies for ultra-speed tube train. In the LSM-EDS system, the key component is superconducting magnet, and its reliability and performance is very important to guarantee the safe-operation of Maglev. As the initiative of the feasibility study, this paper deals with the basic structure of superconducting magnet and core technologies to design and operate it. And by surveying the current R&D achievement in Korea, the nation's capability to develop advanced superconducting magnet for Maglev is presented.

  • PDF

A Study On Full Load Test of IGBT Type Propulsion System for Electric Railway in SMG 6 Line (전동차용 IGBT형 추진제어장치의 6호선 본선 만차 시험에 관한 연구)

  • 박건태;정만규;고영철;방이석;서광덕
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.666-673
    • /
    • 2000
  • This paper describes the full load test results of IGBT VVVF inverter for the railway propulsion system. The 1,650kVA IGBT VVVF inverter has been developed. Therefore, the field test is performed in SMG 6 Line to confirm its the reliability and performance. The train consists of 4M4T(4 Motor car 4 Trailer Car) and the electrical equipment for field test are as follows VVVF inverter 4 sets, 16 traction motors and 2 SIVs. The propulsion system is composed with IC4M(1-Controller 4-Motors). The results of propulsion system which have the excellent acceleration/deceleration and the jerk characteristics as well as starting ability on slope are taken through the field test.

  • PDF

Thrust Performance Improvement through Position Signal Compensation and Estimation in Super Speed Maglev (위치신호 보상 및 추정을 통한 초고속 자기부상철도 추력 성능 향상)

  • Lee, Jin-Ho;Jo, Jeong-Min;Han, Young-Jae;Lee, Chang-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.4739-4746
    • /
    • 2013
  • In position detection for super speed maglev propulsion control, the influence of position signal delay and transmit cycle on propulsion power degradation is investigated analytically and validated by test bed experiments. As a solution to the problem caused by signal transmit, position signal compensation and estimation method is proposed and applied to the test bed. Through experiments, it is confirmed that by adapting the proposed method, the propulsion power is increased remarkably, which results in acceleration and velocity performance improvement. This method could be effectively applied to position detection system of Korean super speed maglev which is under development.

A Study on the Propulsion and Braking Performance of the High Speed Freight Train with Composing the Rolling Stocks Formation (차량편성구성에 따른 고속화물열차의 추진 및 제동성능 분석 연구)

  • Han, Seong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.4
    • /
    • pp.298-302
    • /
    • 2016
  • Currently, logistics are in small quantities and in diverse forms, and the amounts are continuously increasing. Railway logistics however are losing their market share every year mainly due to low operation speed and loading time, which means the trucks are covering the most of the freights. In order to solve these situations, this paper proposed the high speed freight train as working multi-modality with other modes to make effective transshipment. The high speed freight train has maximum operation speed of 300km/h and electric power to run centralized power supply. There are large dual door system, bogie system covering fluctuating load of 15[ton], automatic loading device, ULD(unit load device) bed and ULD locking system in this freight rolling stock. We calculated the performance of powering and braking capacity for this train and proposed how many vehicles are composed of train set. The results in this paper can help to make a decision to define the technical specification of High-speed freight train for the efficiency of rail freight service.