• Title/Summary/Keyword: Traffic safety benefit

Search Result 39, Processing Time 0.019 seconds

Development of safety-Based Guidelines for Cost-Effective Utility Pole Treatment along Highway Rights-of-Way

  • 김정현
    • Proceedings of the KOR-KST Conference
    • /
    • 1997.12a
    • /
    • pp.33-69
    • /
    • 1997
  • This study was conducted to develop a methodology to predict utility pole accident rates and to evaluate cost-effectiveness for safety improvement for utility pole accidents. The utility pole accident rate prediction model was based on the encroachment rate approach introduced in the Transportation Research Board Special Report 214. The utility pole accident rate on a section of highway depends on the roadside encroachment rate and the lateral extent of encroachment. The encroachment rate is influenced by the horizontal and vertical alignment of the highway as well as traffic volume and mean speed. The lateral extent of encroachment is affected by the horizontal and vertical alignment, the mean speed and the roadside slope. An analytical method to generate the probability distribution function for the lateral extent of encroachment was developed for six kinds of encroachment types by the horizontal alignment and encroachment direction. The encroachment rate was calibrated with the information on highway and roadside conditions and the utility pole accident records collected on the sections of 55mph speed limit of the State Trunk Highway 12 in Wisconsin. The encroachment rate on a tangent segment was calibrated as a function of traffic volume with the actual average utility pole accident rates by traffic volume strategies. The adjustment factors for horizontal and vertical alignment were then derived by comparing the actual average utility pole accident rates to the estimations from the model calibrated for tangent and level sections. A computerized benefit-cost analysis procedure was then developed as a means of evaluating alternative countermeasures. The program calculates the benefit-cost ratio and the percent of reduction of utility pole accidents resulting from the implementation of a safety improvement. This program can be used to develop safety improvement: alternatives for utility pole accidents when a predetermined performance level is specified.

  • PDF

Development of safety-Based Guidelines for Cost-Effective Utility Pole Treatment along Highway Rights-of-way

  • 김정현
    • Proceedings of the KOR-KST Conference
    • /
    • 1997.12b
    • /
    • pp.35-72
    • /
    • 1997
  • This study was conducted to develop a methodology to predict utility pole accident rates and to evaluate cost-effectiveness for safety improvement for utility pole accidents. The utility pole accident rate prediction model was based on the encroachment rate approach introduced in the Transportation Research Board special Report 214. The utility pole accident rate on a section of highway depends on the roadside encroachment rate and the lateral extent of encroachment. The encroachment rate is influenced by the horizontal and vertical alignment of the highway as well as traffic volume and mean speed. The lateral extent of encroachment is affected by the horizontal and vertical alignment, the mean speed and the roadside slope. An analytical method to generate the probability distribution function for the lateral extent of encroachment was developed for six kinds of encroachment types by the horizontal alignment and encroachment direction. The encroachment rate was calibrated with the information on highway and roadside conditions and the utility pole accident records collected on the sections of 55mph speed limit of the State Trunk Highway 12 in Wisconsin. The encroachment rate on tangent segment was calibrated as a function of traffic volume with the actual average utility pole accident rates by traffic volume strategies. The adjustment factors for horizontal and vertical alignment were when derived by comparing the actual average utility pole accident rates to the estimations from the model calibrated for tangent and level sections. A computerized benefit-cost analysis procedure was then developed as a means of evaluating alternative countermeasures. The program calculates the benefit-cost ratio and the percent of reduction of utility pole accidents resulting from the implementation of a safety improvement. This program can be used to develop safety improvement alternatives for utility pole accidents when a predetermined performance level is specified.

  • PDF

Characteristic Analysis for Weight Values of Evaluation Items by Traffic Safety Project Type (교통안전사업 유형별 평가항목의 가중치 특성분석)

  • Lee, Heewon;Lee, Jisun
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.147-156
    • /
    • 2018
  • PURPOSES : The purpose of this study is to analyze the characteristics of the weight values of evaluation items by traffic safety project type. METHODS : In general, a large-scale investment in projects such as the traffic safety project requires economic analyses to be performed in advance. However, there is an argument for considering special characteristics of the traffic safety project. Therefore, this study conducted characteristic analysis of the weight values of evaluation items. The analysis consisted of two steps. The first step was hypothesis verification using analysis of variance (ANOVA). In this process, the authors examined whether the weight of evaluation items is the same regardless of the traffic safety project type. Based on the first step's results, the authors proceeded to the second step. The objective of this step was to analyze how different the weight values are by traffic safety project type using an analytic hierarchy process. RESULTS : According to the ANOVA test results, the benefit to cost ratios have different weight values based on traffic safety project type at the 0.01 significance level. The policy evaluation items, such as the plans connection, resident opinion, and regional equity, also showed the same results except that the result for the related plans connection was statistically significant at the 0.05 level. Based on the first step's result, the AHP analysis in the second step showed that the traffic safety projects for vulnerable users and pedestrians have very low weight values in economic evaluation factors compared with other safety project types. The weight values for vulnerable users and pedestrians were 0.29 and 0.26, respectively, in economic evaluation items. On the other hand, the weight values for other safety project types were around 0.6. Among the policy evaluation items, resident opinion showed a higher weight value than other factors, such as connection and regional equity items. CONCLUSIONS : The social and economic impact of a traffic safety project varies by project type and project characteristics. Although the economic approach is overarching and a reasonable methodology is applied for large-scale projects, it should be noted that the safety issue, especially for transportation of vulnerable uses, requires a non-economical approach. Based on the analysis results, this study suggests that the priority of the projects should be determined by separating them into independent assessment groups depending on their characteristics.

A Study on the Cost Benefit Analysis Model of Vessel Traffic Services(I) (선박교통관리제도의 비용편익분석모델에 관한 연구(I))

  • 정재용;이형기;박진수
    • Journal of the Korean Institute of Navigation
    • /
    • v.25 no.1
    • /
    • pp.11-22
    • /
    • 2001
  • Nowadays, it is planning to establish a coastal VTS in Korean southern coastal waters in order to enhance the safety of vessel traffic and to protect the marine environment. But, it surely needs over ten billions Won to establish, operate and maintain the above mentioned coastal VTS. Therefore, this paper proposes the VTS cost-benefit analysis model to confirm the reasonability and decide the priority of the project. This model has three distinct processes. Fist, it is the identification in qualitative terms of the effects of a given proposal. Second, it quantify the specified effects in physical terms. Third, it is the evaluation of the total effects of project. The proposed model in this Paper will contribute to the confirmation and the priority of the project in future.

  • PDF

Application of Risk Management to Forecasting Transportation Demand by Delphi Technique (Delphi기법을 통한 교통수요예측 Risk Management 적용 방안)

  • Chung, Sung-Bong
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.2
    • /
    • pp.267-273
    • /
    • 2011
  • Since 'The Act on Private Investment of The Infrastructure' was established in 1994, private investment as well as government's investment in transport infrastructure has been active. However investment in transport infrastructure has more risks than others' due to uncertainty both in traffic volume and in construction cost. In the current appraisal procedure of deciding transportation infrastructure investment, instead of risk management, the sensitivity analysis considering only the changes of benefit, cost and social discount rate which are main factor affecting economic feasibility is carried out. Therefore the uncertainty of various factors affecting demand, cost and benefit are not considered in feasibility study. In this study the problems in current investment appraisal system were reviewed. Using Delphi technique the major factors which have high uncertainty in feasibility study were surveyed and then improvement plan was suggested in the respective of classic 4 step demand forecasting method. The range estimation technique was also mentioned to deal with the uncertainty of the future.

Estimation of Development Valuation at Marine Tourism complex (해양레저관광단지의 개발가치 추정)

  • Jang, Woon-Jae;Keum, Jong-Soo
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2008.05a
    • /
    • pp.69-74
    • /
    • 2008
  • The aim of this paper is to calculation benefit cost for development of Hwawon leisure & tourism complex. To calculation benefit cost, this paper propose a advanced travel cost method(ATCM) which is to consider Improved travel cost method(ITCM) and variable traffic units with confidence degree cf decision-maker. At the result of calculation, total benefit costs are 292805 million won at 52% of confidence degrees and 10% discount rates.. Also total benefit cost is 304517 million won at 4% of GDP growth rate is 4%.

  • PDF

Comparison of the Frequency of Unsafe Ship-Handling Situations and the Frequency of Marine Accidents at the Kurushima Strait

  • Yasuda, Masaru;Inoue, Kinzo;Usui, Hideo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.10a
    • /
    • pp.184-190
    • /
    • 2006
  • It is requested to be evaluated whether environmental change in marine traffic passage by maintenance work affect ship handling, safety, when re-design of traffic passage is planned. In the maintenance work, it is also important to evaluate the change of risk and also benefits. However, in a current evaluation index, it is difficult to evaluate the benefit. The recently developed safety index that is led by employing the Unsafe Ship-handling situations model (US-model) is able to estimate risk level of marine accident in a process of a ship handling. We have already reported the relation of the ratio of 10-3 in harbors (Yokohama, Kobe, and Osaka in Japan) [1]. In this study, we acquired the relation of the ratio between the US value and the marine accident at a narrow waterway; Kurushima Strait in Japan, using a ship handling simulator. And we experimented to estimate a marine accident reduction achieved by the maintenance work of the altered shape of passage.

  • PDF

Development of driving simulator modules for driving safely (주행경제를 위한 드라이빙 시뮬레이터 모듈 연구)

  • Chung, Sung-Hak
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2008.11a
    • /
    • pp.569-578
    • /
    • 2008
  • The aim of this study is to propose economical safety driving speed index which those are geometric road status; examine the levels of which those cost-benefit of driving fuel expenditure; are search road safety design and operational technology for driving simulators. For the objective, we analyzed the current status of driving fuel expenditure and driving scenarios by the road alignments, and reviewed driving and technical specifications by the geometric types of road according to the implementation, and extended completion. Throughout the result of this study, diverse related driving information provision service, efficiently driving system is expected to be implemented in the national highway design system.

  • PDF

Comparison of Safety Level between Driver's Ages by Threshold Zone Luminance Level of Vehicular Traffic Tunnel (터널 경계부 휘도수준에 따른 운전자 연령대별 안전수준 비교)

  • Cho, Won Bum;Jeong, Jun Hwa;Kim, Do Gyeong;Park, Won Il
    • International Journal of Highway Engineering
    • /
    • v.17 no.1
    • /
    • pp.129-142
    • /
    • 2015
  • PURPOSES : The purpose of this study is to suggest a basis for setting appropriate safety goals specifically related to the threshold zone luminance in a vehicular traffic tunnel. METHODS : In the test, drivers were divided into two groups. One group consisted of all drivers (average drivers) group with an age ratio of drivers holding domestic driver's license and driver group by age to produce threshold zone luminance in the tunnel. The threshold zone luminance produced as a result was used to analyze how it affects the safety level of each driver group and provide a basis for setting an appropriate safety criterion that can be used to determine threshold zone luminance. We used test equipment, test conditions, and ananalysis of threshold zone luminance identical to that reported by ChoandJung(2014) but the values of adaptation luminance in our analys is were expanded to range from100 to $10,000cd/m^2$. RESULTS : Adaptation luminance and threshold zone luminance are found to be related by a quadratic function. The threshold zone luminance needed by older drivers to ensure a certain safety level is significantly higher than that for drivers of other age brackets when adaptation luminance increases. 56% of older drivers are at an increased risk of an accident at the same luminance for which the safety level of average drivers is 75%. The safety level that can be achieved for older drivers increases to above 60% when threshold zone luminance level is set with the goal of attaining a safety level of more than 85% for average drivers. The safety level that can be attained for average drivers is above 90% when the threshold zone luminance is high enough to ensure over 75% in the safety level of older drivers. Results of this study are applicable to highways and others whose designed speed is 100 km/h. CONCLUSIONS : Threshold zone luminance determined on the basis of drivers having average visual ability is of limited value as a performance standard for ensuring the safety of older drivers. Hence, safety level for older drivers should be considered separately from safety levels for drivers with an average ability to avoid risk. Upward adjustment of older drivers' safety level in the process of determining appropriate threshold zone luminance in a vehicular traffic tunnel may bring both tangible and intangible benefit as a result of reducing accidents. However, there is an associated dollar cost arising from installing and operating lights. As a result, the economic impact of these trade-offs should also be considered.

A Study for Reducing Traffic Accident at Signalized Intersection - Focus on Left-turn Phase Sequence - (교차로 교통사고 감소방안에 관한 연구 - 좌회전 현시 순서를 중심으로 -)

  • Park, Jong-Wook;Lee, In-Won;Lee, Choul-Ki;Yang, Lyun-Ho;Lee, Gun-Sang
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.5 no.2 s.10
    • /
    • pp.61-71
    • /
    • 2006
  • The main purpose of this study is to search a method for reducing traffic accident at signalized intersections. One of the important factors for this is the Left-turn phase sequence. In 1985, the operational principle of Left-turn phase Sequence was changed from Lagging left-turn to Leading left-turn in Korea. Then there was a resonable motive-no exclusive left turn-lane and narrow intersection. So, it is necessary to evaluate the performance difference between Leading and Lagging left -turn phase Sequence. The process of this study is as follows: $\cdot$ First, all the intersection was divided three parts for analysis the traffic safety: Inside part of an Intersection, Crosswalk, Intersection approach and exit. $\cdot$ Second, a safety analysis was performed by using the concepts of 'Effective interphase Period(EIP)' and 'Conflict method' The Study result is that the benefit of of phase Sequence changes from Leading to Lagging phase were significant. For an example the Accident cost will reduced about 41.8 billion won per year in korea.

  • PDF