• Title/Summary/Keyword: Traffic light controller

Search Result 21, Processing Time 0.025 seconds

A Fuzzy Traffic Controller Considering the spillback on the Multiple Crossroads

  • Kim, Young-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.6
    • /
    • pp.722-728
    • /
    • 2003
  • In this paper, we propose a fuzzy traffic controller of Sugeno`s fuzzy model so as to model the nonlinear characteristics of controlling the traffic light. It use a degree of the traffic congestion of the preceding roads as an input so that it can cope with traffic congestion appropriately, which causes the loss of fuel and our discomfort. First, in order to construct fuzzy traffic controller of Sugeno`s fuzzy model, we model the control process of the traffic light by using Mamdani`s fuzzy model, which has the uniform membership functions of the same size and shape. Second, we make Mamdani`s fuzzy model with the non-uniform membership functions so that it can exactly reflect the knowledge of experts and operators. Last, we construct the fuzzy traffic controller of Sugeno`s fuzzy model by learning from the input/output data, which is retrieved from Mamdani`s fuzzy model with the non-uniform membership functions. We compared and analyzed the fixed traffic light controller, the fuzzy traffic controller of Mamdani`s fuzzy model and the fuzzy traffic controller of Sugeno`s fuzzy model by using the delay time and the proportion of the entered vehicles to the occurred vehicles. As a result of comparison, the fuzzy traffic controller of Sugeno`s fuzzy model showed the best performance.

Fuzzy Traffic Controller of Sugeno′s Model

  • Kim, Young-Sik;Lee, Jae-Hoon;Park, Wan-Kyoo;Lee, Sung-Joo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.664-667
    • /
    • 2003
  • We propose a frizzy traffic controller of Sugeno's fuzzy model so as to model the nonlinear characteristics of controlling the traffic light. It uses a degree of the traffic congestion of the preceding roads as an input so that it can cope with traffic congestion appropriately, which causes the loss of fuel and our discomfort. In order to construct fuzzy traffic controller of Sugeno's fuzzy model we first model the control process of the traffic light by using Mamdani's fuzzy model, which has the uniform membership functions of the same size and shape. Next we make Mamdani's fuzzy model with the non-uniform membership functions so that it can exactly reflect the knowledge of experts and operators. Lastly, we construct the fuzzy traffic controller of Sugeno's fuzzy model by learning from the input/output data, which is retrieved from Mamdani's fuzzy model with the non-uniform membership functions. We compared and analyzed the service level of the traffic light controllers by using the delay time. As a result of comparison, the fuzzy traffic controller of Sugeno's fuzzy model shows the best service level of them.

  • PDF

Development of a Traffic Signal Controller for the Tri-light Traffic Signal (3구신호등 제어용 교통신호제어기 개발)

  • Han, Won-Sub;Gho, Gwang-Yong;Heo, Nak-Won;Lee, Chul-Kee;Ha, Dong-Ik;Lee, Byung-Cheol
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.5
    • /
    • pp.49-58
    • /
    • 2010
  • The traffic signal controllers being used in the domestic currently are being manufactured based on the korean national police standard which was developed for controlling the quad-light traffic signal having the red, yellow, left-turn arrow, and green lights. But according to the national policy for the traffic operation, they have to be changed to be able to switch the tri-light signal having red, yellow and green lights. In this study, a new tri-light traffic signal controller was designed and developed by the way improving the Signal Control Unit of the existing quad-light standard traffic controller. The Load Signal Unit(LSU) was improved to output 6 signals which are the two assemblies of three signal indications having the red, yellow, and green lights. To enough traffic signals output to control each directional movements and the various transport modes which are car, bus, bike, and pedestrian etc., the connector bus system was designed to be able to accommodate maximum 96 signals outputs being constructed by 16 LSUs. Flasher device was developed to be able to support maximum 32 red signals. In the software, the communication protocol between traffic control center and the traffic signal controller was improved and new signal map code values were defined for the developed LSU controlling the quad-light traffic signal. A model of the quad-light traffic signal controller developed and was tested three operations, protocol-operation, remote-command and control-mode. The test result operated all of them successfully.

Implementation of a New Guard Lamp and Traffic Light Controller Using Zigbee (Zigbee를 이용한 보안등, 신호등 제어기 구현)

  • Song, Jae-Yeol;Yu, Myung-Whan;Park, Du-Su;Park, Seong-Mo
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.637-638
    • /
    • 2008
  • In this paper, we describe a new guard lamp and traffic light controller using Zigbee one of near field communication. It can control guard lamp and traffic light system by wireless system. Also, it can definite in the sever system New guard lamp and traffic light using zibee system improved for waste power, an accident and management condition.

  • PDF

Decision of Optimum Cycle of Traffic Junction Vehicle Signal Control using Fuzzy Identification Algorithm (퍼지 동정 알고리즘을 이용한 교차로 교통 신호등 제어의 최적 주기 결정)

  • 진현수;김재필;김종원;홍완혜;김성환
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.6
    • /
    • pp.100-108
    • /
    • 1993
  • In this paper, noticing the point of human's ability which appropriately cope with vague conditions, we design fuzzy traffic signal light controller similar to human's distinction ability and decide the optimum cycle most suited to any traffic junction using fuzzy identification algorithm. In this study, for the control output decision process we design fuzzy controller better than electronic vehicle actuated controller in performance. We propose the cycle decision method which is not limited by the variance of traffic junction vehicle number through overcoming the limit of Webster's method which is adopted by the fixed cycle controller. Simulated experimental results show that fuzzy controller and fuzzy identification algorithm are better than the existing electronic vehicle actuated controller and fixed cycle controller in delay time per vehicle.

  • PDF

Development of A Traffic Network Controller using Fuzzy Logic (퍼지 논리를 사용한 교통망 제어기의 개발)

  • Kim, Jong-Wan;Han, Byung-Joon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.11
    • /
    • pp.2908-2914
    • /
    • 1998
  • This paper presents an intelligent signal for controling the traffic lights on traffic junction network with dynamic traffic flow, When a junction is connected to adjacent junctions on four sides. Prior researches have been done on the single traffic junction. However, it is dificult to apply single junction controller to real traffic situation. In this paper, we develop a fuzzy taffic network controller which adjusts the extension time of current green phase by using teh fuzzy input variables such as the number of entering cars at the green light, the number of waiting cars during the red light, and the traffic volume. The proposed method was compared to the existing junction signal control methods on controllers in terms of average delay time of cars and the cost function defined in this paper.

  • PDF

Forecasting of Real Time Traffic Situation by Fuzzy and Intelligent Software Programmable Logic Controller (퍼지 및 지능적 PLC에 의한 실시간 교통상황 예보 시스템)

  • 홍유식;조영임
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.4
    • /
    • pp.73-83
    • /
    • 2004
  • With increasing numbers of vehicles on restricted roads, It happens that we have much wasted time and decreased average car speed. This paper proposes a new concept of coordinating green time which controls 10 traffic intersection systems. For instance, if we have a baseball game at 8 pm today, traffic volume toward the baseball game at 8 pm today, franc volume toward the baseball game will be increased 1 hour or 1 hour and 30 minutes before the baseball game. At that time we can not predict optimal green time Even though there have smart electro-sensitive traffic light system. Therefore, in this paper to improve average vehicle speed and reduce average vehicle waiting time, we created optimal green time using fuzzy rules md neural network as a preprocessing. Also, we developed an Intelligent PLC(Programmable Logic Controller) for real time traffic forecasting as a postprocesing about unexpectable conditions. Computer simulation results proved reducing average vehicle waiting time which proposed coordinating green time better than electro-sensitive franc light system does not consider coordinating green time.

A Fuzzy Traffic Controller with Asymmetric Membership Functions (비대칭적인 소속 함수를 갖는 퍼지 교통 제어기)

  • Kim, Jong-Wan;Choi, Seung-Kook
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.10
    • /
    • pp.2485-2492
    • /
    • 1997
  • Nowadays the traffic conditions have been getting worse due to continuous increase in the number of vehicles. So it has become more important to manage traffic signal lights efficiently. Recently fuzzy logic is introduced to control the cycle time of traffic lights adaptively. Conventional fuzzy logic controller adjusts the extension time of current green phase by using the fuzzy input variables such as the number of entering vehicles at the green light and the number of waiting vehicle during the red light. However this scheme is inadequate for an intersection with variable traffic densities. In this paper, a new FLC with asymmetric membership functions that reflects more exactly traffic flows than other FLCs with symmetric ones regardless of few control rules is propsed. The effectiveness of the proposed method was shown through simulation of a single intersection. The experimental results yielded the superior performance of the proposed FLC in terms of the average delay time, the number of passed vehicles, and the degree of saturation.

  • PDF