현장에서 수집되는 교통원시자료는 수집장비의 결함 및 주변환경 등에 의해 다양한 이상치가 발생한다. 원시자료의 품질은 추가 가공을 통해 생성되는 교통정보의 신뢰도에 직접적인 영향을 미치는 중요한 요인이다. 실시간으로 수집되는 교통원시자료를 1차 가공하는데 있어서 핵심은 이상치(Outlier)를 검지하고 보정하는 것이라고 할 수 있다. 본 연구에서는 GPS장비를 이용해 얻은 개별차량의 주행속도에서 발생하는 이상치를 제거하고 보정하는 기법을 제안하였다. GPS는 광범위한 교통네트워크상의 차량추적에 용이하게 사용될 수 있는 장점이 있다. 수집된 개별차량의 주행속도에서 이상치를 검지하고 보정하기 위해 국소가중다항회귀분석(LWR: Locally Weighted Regression)을 적용하였다. 또한 국소가중다항회귀분석을 수행하기 위한 파라미터 결정 알고리즘을 개발하여 적용하였다. 개발된 필터링 기법의 성능 평가를 위해 Synthetic Outlier를 생성 및 주입하여 개발된 필터링 기법을 통해 보정시키고 원시자료와 비교 분석 하였고, LWR을 이용한 기법의 상대적 성능 평가를 위해 지수평활화를 이용한 기법과 비교하였다. 평가 결과 LWR기법이 지수평활화를 이용한 기법보다 낮은 오차율을 보여 상대적으로 우수함을 검증하였다. 본 연구에서 제안한 방법론은 교통정보공학 분야의 자료처리 및 정보가공을 위한 도구로서 활용도가 클 것으로 기대된다.
본 논문에서는 VBR(Variable-Bit-Rate) 트래픽의 비선형적이고 버스티한 특성을 모델화 한 GOP ARIMA(ARIMA for Group Of Pictures) 모델을 칼만 필터 알고리즘을 이용하여 실시간으로 예측하는 기법을 제안한다. 칼만 필터를 이용한 예측 기법은 GOP ARIMA의 상태공간 모델링 과정과 향후 N초 간의 트래픽을 예측하는 과정으로 구성된다. 실험을 위해 GOP의 크기가 각각 15인 세 가지 종류의 MPEG VBR 트래픽(뉴스, 드라마, 스포츠)을 제작하였고, 칼만 필터를 이용한 세 가지 종류의 트래픽의 예측 결과를 선형 예측법과 이중 지수 평활법을 이용해 예측한 결과와 비교해 예측 성능이 상대적으로 우수함을 확인할 수 있었다. 또한 예측값에 신뢰 구간을 설정하는 신뢰 구간 분석법을 통해 트래픽 관점에서 장면 변화를 예측하는 방법을 제시하였다. 본 논문의 칼만 필터 기반의 예측 알고리즘은 MPEG 기반 VBR 트래픽을 비롯한 기타 인터넷 트래픽을 실시간으로 예측하는 방법과 이를 이용해 인터넷 서버의 설계 및 자원 할당 정책 등을 위한 트래픽 엔지니어링 연구에 기여할 수 있을 것이다.
본 논문에서는 시간적 계층 개념을 활용하여 시계열 자료를 예측하는 방법을 소개한다. 횡단적 계층 자료 분석에서와 유사한 방법으로 중복되지 않는 시간적 계층을 시계열 자료에 구조화할 수 있다. 이러한 시간적 계층을 활용하여 조정된 예측은 기존의 계층별 독립적 기저 예측 및 상향식 예측보다 더 정확하고 강건한 예측값을 생성한다. 실증 분석으로서 국내 교통사고 발생건수를 시간적 계층 개념을 활용하여 예측한다. 분석 결과, 조정 예측이 기존의 다른 예측보다 예측 성능면에서 더 우수함을 확인할 수 있다.
The CAN (Controller Area Network) system is the most dominant protocol for in-vehicle networking system because it provides bounded transmission delay among ECUs (Electronic Control Units) at data rates between 125Kbps and 1Mbps. And, many automotive companies have chosen the CAN protocol for their in-vehicle networking system such as chassis network system because of its excellent communication characteristics. However, the increasing number of ECUs and the need for more intelligent functions such as ADASs (Advanced Driver Assistance Systems) or IVISs (In-Vehicle Information Systems) require a network with more network capacity and the real-time QoS (Quality-of-Service). As one approach to enhancing the network capacity of a CAN system, this paper introduces a CAN system with dual communication channel. And, this paper presents a distributed message allocation method that allocates messages to the more appropriate channel using forecast traffic of each channel. Finally, an experimental testbed using commercial off-the-shelf microcontrollers with two CAN protocol controllers was used to demonstrate the feasibility of the CAN system with dual communication channel using the distributed message allocation method.
컨테이너 물동량 예측은 항만과 항만의 개발에 있어서 매우 중요하다. 일반적으로 이동평균법, 지수평활법, 회귀분석과 같은 통계적인 방법들은 물동량 예측에서 많이 사용되어졌다. 하지만, 컨테이너 물동량 예측에 영향을 주는 여러 가지 요소들을 고려해 보면 다중병렬처리시스템인 신경망을 이용하는 것이 효과적이다. 본 연구는 신경망의 역전파학습알고리즘을 이용하여 컨테이너 활동량을 예측하였다. 신경망을 이용하여 영향력 있는 요소들을 선별하였으며, 선별된 요소들을 이용하여 물동량 예측을 하였다. 또한 제안된 신경망 알고리즘과 통계적인 방법의 예측들을 비교하였다.
본 논문에서는 계층적 시계열 자료 분석을 위한 대표적인 두 가지 방법인 상향식과 최적조합 예측법을 소개한다. 이러한 예측법은 계층적 시계열을 구성하는 모든 계열을 예측해야 하는 독립적 예측과 달리, 임의의 조정 과정이 없이 하위 계층 계열의 예측값의 합은 항상 상위 계층의 예측값과 일치하게 된다. 또한, 독립적 예측과 비교하여 예측력을 향상시킨다. 계층적 예측법의 효율성을 살펴보기 위하여 국내 16개 시도별 남녀 교통사고 발생건수 시계열 자료를 예측하였다. 이를 통하여 교통사고 발생건수에 대한 각 계층의 예측에서 계층적 방법과 독립적 방법의 차이점 및 우수성을 비교하였다.
Forecasting the future values of an observed time series is an important problem in many areas, including economics, traffic engineering, production planning, sales forecasting, and stock control. The purpose of this paper is aimed to discover the more efficient forecasting model through the parameter estimation and residual analysis among the quantitative method such as Winters' exponential smoothing model, Box-Jenkins' model, and Kalman filtering model. The mean of the time series is assumed to be a linear combination of known functions. For a parameter estimation and residual analysis, Winters', Box-Jenkins' model use Statgrap and Timeslab software, and Kalman filtering utilizes Fortran language. Therefore, this paper can be used in real fields to obtain the most effective forecasting model.
본 논문은 함정의 대규모 임무지향시스템에서 전술 데이터를 전송할 때 발생할 수 있는 인코더와 디코더 언더플로우를 방지하고, 트래픽이 프레임 별로 역동적으로 발생할 수 있는 환경을 고려하여 트래픽 스무딩을 수행한 전송 시스템에 대하여 설명한다. 기존의 H.263, H.264의 전송 표준 방식인 on-off policing 방법은 인코더의 목표 비트 전송률(Target Bit Rate)에 따라서 일정한 값으로 정해지는 것과 달리, 프레임을 인코딩함으로써 발생한 프레임의 전체 셀 량과 슬라이스 별로 발생하는 데이터 셀의 역동성을 반영하여 프레임마다 전송시간과 전송률을 반영해주면 부드럽게 전술 데이터의 전송이 일어난다. 또한 기존의 on-off policing과 제시한 대규모 임무지향시스템에서의 트래픽 스무딩 알고리듬의 성능을 비교하여 분석한다.
인터넷 비디오 방송 같은 멀티미디어 응용 프로그램들은 네트워크를 통한 비디오 전송을 필요로 한다. 그런데 네트워크 자원에 제약이 많은 경우에는 전송되는 비디오 스트림의 손실이 불가피하며 이러한 손실이 클라이언트나 네트워크에서 일어난다면 네트워크 자원의 낭비가 생기게 된다. 이에 본 논문에서는 제약이 많은 네트워크를 통해 계층적 인코딩이 적용된 비디오 스트림을 전송할 때 서버가 프레임 전체를 버리지 않고 가능하면 덜 중요한 계층만을 최적으로 버리는 선택적 계층 삭제 알고리즘을 제안하였다. 어떤 계층을 버리는데 드는 비용을 클라이언트 측에서 얻을 수 있는 QoS와 연관지어 볼 때, 제안하는 선택적 계층 삭제 알고리즘은 네트워크 자원 제약이 커질수록 기존의 선택적 프레임 삭제 알고리즘보다 높은 QoS를 보여주었다.
TCS (Toll Collection System) 데이터는 원시 데이터 자체로서도 구간의 교통상황을 어느 정도 반영할 수 있는 교통특 성을 내포하고 있다. 그러나 TCS 데이터에는 이상치가 포함되어 있어 이러한 데이터는 해당 구간의 통행시간을 대표한다고 볼 수 없으므로 만약 이러한 이상치들이 포함되어 있음에도 불구하고 제거하지 않고 집락을 한다면 이상치들로 인해 통행시간은 크게 왜곡 될 가능성이 있다. 특히 장거리 구간일수록 통행시간의 분산이 증가하여 동일구간 동일시간대라도 다양한 통행시간이 분포하고 있다. 구간이 길어질수록 통행시간의 변동이 심하여 적절한 통행시간 대푯값을 구하기가 어렵다. 따라서 TCS 자료를 이용하여 통행시간의 대푯값을 산정하기 위해서는 통행시간의 변동 특성을 파악하는 것이 중요하다. 본 연구에서는 TCS 데이터의 전처리 기법을 개선하되 구간의 길이와 교통상황에 따른 통행시간의 변동을 고려하여 TCS 원시데이터로부터 시 공간적 통행패턴을 파악할 수 있는 의미 있는 통행시간을 추출하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.