• 제목/요약/키워드: Traffic Smoothing

검색결과 61건 처리시간 0.023초

국소가중다항회귀분석을 이용한 이상치제거 및 자료보정기법 개발 (GPS를 이용한 개별차량 주행속도를 중심으로) (Correction of Erroneous Individual Vehicle Speed Data Using Locally Weighted Regression (LWR))

  • 임희섭;오철;박준형;이건우
    • 대한교통학회지
    • /
    • 제27권2호
    • /
    • pp.47-56
    • /
    • 2009
  • 현장에서 수집되는 교통원시자료는 수집장비의 결함 및 주변환경 등에 의해 다양한 이상치가 발생한다. 원시자료의 품질은 추가 가공을 통해 생성되는 교통정보의 신뢰도에 직접적인 영향을 미치는 중요한 요인이다. 실시간으로 수집되는 교통원시자료를 1차 가공하는데 있어서 핵심은 이상치(Outlier)를 검지하고 보정하는 것이라고 할 수 있다. 본 연구에서는 GPS장비를 이용해 얻은 개별차량의 주행속도에서 발생하는 이상치를 제거하고 보정하는 기법을 제안하였다. GPS는 광범위한 교통네트워크상의 차량추적에 용이하게 사용될 수 있는 장점이 있다. 수집된 개별차량의 주행속도에서 이상치를 검지하고 보정하기 위해 국소가중다항회귀분석(LWR: Locally Weighted Regression)을 적용하였다. 또한 국소가중다항회귀분석을 수행하기 위한 파라미터 결정 알고리즘을 개발하여 적용하였다. 개발된 필터링 기법의 성능 평가를 위해 Synthetic Outlier를 생성 및 주입하여 개발된 필터링 기법을 통해 보정시키고 원시자료와 비교 분석 하였고, LWR을 이용한 기법의 상대적 성능 평가를 위해 지수평활화를 이용한 기법과 비교하였다. 평가 결과 LWR기법이 지수평활화를 이용한 기법보다 낮은 오차율을 보여 상대적으로 우수함을 검증하였다. 본 연구에서 제안한 방법론은 교통정보공학 분야의 자료처리 및 정보가공을 위한 도구로서 활용도가 클 것으로 기대된다.

Non-stationary VBR 트래픽을 위한 동적 데이타 크기 예측 알고리즘 (On-line Prediction Algorithm for Non-stationary VBR Traffic)

  • 강성주;원유집;성병찬
    • 한국정보과학회논문지:정보통신
    • /
    • 제34권3호
    • /
    • pp.156-167
    • /
    • 2007
  • 본 논문에서는 VBR(Variable-Bit-Rate) 트래픽의 비선형적이고 버스티한 특성을 모델화 한 GOP ARIMA(ARIMA for Group Of Pictures) 모델을 칼만 필터 알고리즘을 이용하여 실시간으로 예측하는 기법을 제안한다. 칼만 필터를 이용한 예측 기법은 GOP ARIMA의 상태공간 모델링 과정과 향후 N초 간의 트래픽을 예측하는 과정으로 구성된다. 실험을 위해 GOP의 크기가 각각 15인 세 가지 종류의 MPEG VBR 트래픽(뉴스, 드라마, 스포츠)을 제작하였고, 칼만 필터를 이용한 세 가지 종류의 트래픽의 예측 결과를 선형 예측법과 이중 지수 평활법을 이용해 예측한 결과와 비교해 예측 성능이 상대적으로 우수함을 확인할 수 있었다. 또한 예측값에 신뢰 구간을 설정하는 신뢰 구간 분석법을 통해 트래픽 관점에서 장면 변화를 예측하는 방법을 제시하였다. 본 논문의 칼만 필터 기반의 예측 알고리즘은 MPEG 기반 VBR 트래픽을 비롯한 기타 인터넷 트래픽을 실시간으로 예측하는 방법과 이를 이용해 인터넷 서버의 설계 및 자원 할당 정책 등을 위한 트래픽 엔지니어링 연구에 기여할 수 있을 것이다.

시간적 계층을 이용한 교통사고 발생건수 예측 (Temporal hierarchical forecasting with an application to traffic accident counts)

  • 전관영;성병찬
    • 응용통계연구
    • /
    • 제31권2호
    • /
    • pp.229-239
    • /
    • 2018
  • 본 논문에서는 시간적 계층 개념을 활용하여 시계열 자료를 예측하는 방법을 소개한다. 횡단적 계층 자료 분석에서와 유사한 방법으로 중복되지 않는 시간적 계층을 시계열 자료에 구조화할 수 있다. 이러한 시간적 계층을 활용하여 조정된 예측은 기존의 계층별 독립적 기저 예측 및 상향식 예측보다 더 정확하고 강건한 예측값을 생성한다. 실증 분석으로서 국내 교통사고 발생건수를 시간적 계층 개념을 활용하여 예측한다. 분석 결과, 조정 예측이 기존의 다른 예측보다 예측 성능면에서 더 우수함을 확인할 수 있다.

중복 통신 채널을 가진 CAN 시스템에서 분산 메시지 할당 방법에 관한 연구 (A Study on Distributed Message Allocation Method of CAN System with Dual Communication Channels)

  • 김만호;이종갑;이석;이경창
    • 제어로봇시스템학회논문지
    • /
    • 제16권10호
    • /
    • pp.1018-1023
    • /
    • 2010
  • The CAN (Controller Area Network) system is the most dominant protocol for in-vehicle networking system because it provides bounded transmission delay among ECUs (Electronic Control Units) at data rates between 125Kbps and 1Mbps. And, many automotive companies have chosen the CAN protocol for their in-vehicle networking system such as chassis network system because of its excellent communication characteristics. However, the increasing number of ECUs and the need for more intelligent functions such as ADASs (Advanced Driver Assistance Systems) or IVISs (In-Vehicle Information Systems) require a network with more network capacity and the real-time QoS (Quality-of-Service). As one approach to enhancing the network capacity of a CAN system, this paper introduces a CAN system with dual communication channel. And, this paper presents a distributed message allocation method that allocates messages to the more appropriate channel using forecast traffic of each channel. Finally, an experimental testbed using commercial off-the-shelf microcontrollers with two CAN protocol controllers was used to demonstrate the feasibility of the CAN system with dual communication channel using the distributed message allocation method.

신경망을 이용한 컨테이너 물동량 예측에 관한 연구 (A Study on the Forecasting of Container Volume using Neural Network)

  • 박성영;이철영
    • 한국항해항만학회지
    • /
    • 제26권2호
    • /
    • pp.183-188
    • /
    • 2002
  • 컨테이너 물동량 예측은 항만과 항만의 개발에 있어서 매우 중요하다. 일반적으로 이동평균법, 지수평활법, 회귀분석과 같은 통계적인 방법들은 물동량 예측에서 많이 사용되어졌다. 하지만, 컨테이너 물동량 예측에 영향을 주는 여러 가지 요소들을 고려해 보면 다중병렬처리시스템인 신경망을 이용하는 것이 효과적이다. 본 연구는 신경망의 역전파학습알고리즘을 이용하여 컨테이너 활동량을 예측하였다. 신경망을 이용하여 영향력 있는 요소들을 선별하였으며, 선별된 요소들을 이용하여 물동량 예측을 하였다. 또한 제안된 신경망 알고리즘과 통계적인 방법의 예측들을 비교하였다.

계층적 시계열 분석을 이용한 지역별 교통사고 발생건수 예측 (Hierarchical time series forecasting with an application to traffic accident counts)

  • 이주은;성병찬
    • 응용통계연구
    • /
    • 제30권1호
    • /
    • pp.181-193
    • /
    • 2017
  • 본 논문에서는 계층적 시계열 자료 분석을 위한 대표적인 두 가지 방법인 상향식과 최적조합 예측법을 소개한다. 이러한 예측법은 계층적 시계열을 구성하는 모든 계열을 예측해야 하는 독립적 예측과 달리, 임의의 조정 과정이 없이 하위 계층 계열의 예측값의 합은 항상 상위 계층의 예측값과 일치하게 된다. 또한, 독립적 예측과 비교하여 예측력을 향상시킨다. 계층적 예측법의 효율성을 살펴보기 위하여 국내 16개 시도별 남녀 교통사고 발생건수 시계열 자료를 예측하였다. 이를 통하여 교통사고 발생건수에 대한 각 계층의 예측에서 계층적 방법과 독립적 방법의 차이점 및 우수성을 비교하였다.

수요예측 모형의 비교분석과 적용 (A Comparative Analysis of Forecasting Models and its Application)

  • 강영식
    • 산업경영시스템학회지
    • /
    • 제20권44호
    • /
    • pp.243-255
    • /
    • 1997
  • Forecasting the future values of an observed time series is an important problem in many areas, including economics, traffic engineering, production planning, sales forecasting, and stock control. The purpose of this paper is aimed to discover the more efficient forecasting model through the parameter estimation and residual analysis among the quantitative method such as Winters' exponential smoothing model, Box-Jenkins' model, and Kalman filtering model. The mean of the time series is assumed to be a linear combination of known functions. For a parameter estimation and residual analysis, Winters', Box-Jenkins' model use Statgrap and Timeslab software, and Kalman filtering utilizes Fortran language. Therefore, this paper can be used in real fields to obtain the most effective forecasting model.

  • PDF

대규모 임무지향시스템의 네트워크 트래픽 스무딩 방법 (Traffic smoothing of large-scale mission critical system)

  • 이인웅;김태완;이동호;이상훈
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2012년도 하계학술대회
    • /
    • pp.199-201
    • /
    • 2012
  • 본 논문은 함정의 대규모 임무지향시스템에서 전술 데이터를 전송할 때 발생할 수 있는 인코더와 디코더 언더플로우를 방지하고, 트래픽이 프레임 별로 역동적으로 발생할 수 있는 환경을 고려하여 트래픽 스무딩을 수행한 전송 시스템에 대하여 설명한다. 기존의 H.263, H.264의 전송 표준 방식인 on-off policing 방법은 인코더의 목표 비트 전송률(Target Bit Rate)에 따라서 일정한 값으로 정해지는 것과 달리, 프레임을 인코딩함으로써 발생한 프레임의 전체 셀 량과 슬라이스 별로 발생하는 데이터 셀의 역동성을 반영하여 프레임마다 전송시간과 전송률을 반영해주면 부드럽게 전술 데이터의 전송이 일어난다. 또한 기존의 on-off policing과 제시한 대규모 임무지향시스템에서의 트래픽 스무딩 알고리듬의 성능을 비교하여 분석한다.

  • PDF

계층적 인코딩이 적용된 선택적 계층 삭제를 통한 트래픽 완화 기법 (Traffic Smoothing using Selective Layer Discard with Layered Encoding)

  • 노지원;강현정;이미정
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (3)
    • /
    • pp.484-486
    • /
    • 2000
  • 인터넷 비디오 방송 같은 멀티미디어 응용 프로그램들은 네트워크를 통한 비디오 전송을 필요로 한다. 그런데 네트워크 자원에 제약이 많은 경우에는 전송되는 비디오 스트림의 손실이 불가피하며 이러한 손실이 클라이언트나 네트워크에서 일어난다면 네트워크 자원의 낭비가 생기게 된다. 이에 본 논문에서는 제약이 많은 네트워크를 통해 계층적 인코딩이 적용된 비디오 스트림을 전송할 때 서버가 프레임 전체를 버리지 않고 가능하면 덜 중요한 계층만을 최적으로 버리는 선택적 계층 삭제 알고리즘을 제안하였다. 어떤 계층을 버리는데 드는 비용을 클라이언트 측에서 얻을 수 있는 QoS와 연관지어 볼 때, 제안하는 선택적 계층 삭제 알고리즘은 네트워크 자원 제약이 커질수록 기존의 선택적 프레임 삭제 알고리즘보다 높은 QoS를 보여주었다.

  • PDF

통행시간 추정을 위한 TCS 데이터의 전처리 모형 개발 (A Development of Preprocessing Models of Toll Collection System Data for Travel Time Estimation)

  • 이현석;남궁성
    • 한국ITS학회 논문지
    • /
    • 제8권5호
    • /
    • pp.1-11
    • /
    • 2009
  • TCS (Toll Collection System) 데이터는 원시 데이터 자체로서도 구간의 교통상황을 어느 정도 반영할 수 있는 교통특 성을 내포하고 있다. 그러나 TCS 데이터에는 이상치가 포함되어 있어 이러한 데이터는 해당 구간의 통행시간을 대표한다고 볼 수 없으므로 만약 이러한 이상치들이 포함되어 있음에도 불구하고 제거하지 않고 집락을 한다면 이상치들로 인해 통행시간은 크게 왜곡 될 가능성이 있다. 특히 장거리 구간일수록 통행시간의 분산이 증가하여 동일구간 동일시간대라도 다양한 통행시간이 분포하고 있다. 구간이 길어질수록 통행시간의 변동이 심하여 적절한 통행시간 대푯값을 구하기가 어렵다. 따라서 TCS 자료를 이용하여 통행시간의 대푯값을 산정하기 위해서는 통행시간의 변동 특성을 파악하는 것이 중요하다. 본 연구에서는 TCS 데이터의 전처리 기법을 개선하되 구간의 길이와 교통상황에 따른 통행시간의 변동을 고려하여 TCS 원시데이터로부터 시 공간적 통행패턴을 파악할 수 있는 의미 있는 통행시간을 추출하고자 한다.

  • PDF