On-line Prediction Algorithm for Non-stationary VBR Traffic

Non-stationary VBR 트래픽을 위한 동적 데이타 크기 예측 알고리즘

  • 강성주 (한국전자통신연구원 디지털홈 연구단) ;
  • 원유집 (한양대학교 전자전기컴퓨터공학부) ;
  • 성병찬 (중앙대학교 수학통계학부)
  • Published : 2007.06.15

Abstract

In this paper, we develop the model based prediction algorithm for Variable-Bit-Rate(VBR) video traffic with regular Group of Picture(GOP) pattern. We use multiplicative ARIMA process called GOP ARIMA (ARIMA for Group Of Pictures) as a base stochastic model. Kalman Filter based prediction algorithm consists of two process: GOP ARIMA modeling and prediction. In performance study, we produce three video traces (news, drama, sports) and we compare the accuracy of three different prediction schemes: Kalman Filter based prediction, linear prediction, and double exponential smoothing. The proposed prediction algorithm yields superior prediction accuracy than the other two. We also show that confidence interval analysis can effectively detect scene changes of the sample video sequence. The Kalman filter based prediction algorithm proposed in this work makes significant contributions to various aspects of network traffic engineering and resource allocation.

본 논문에서는 VBR(Variable-Bit-Rate) 트래픽의 비선형적이고 버스티한 특성을 모델화 한 GOP ARIMA(ARIMA for Group Of Pictures) 모델을 칼만 필터 알고리즘을 이용하여 실시간으로 예측하는 기법을 제안한다. 칼만 필터를 이용한 예측 기법은 GOP ARIMA의 상태공간 모델링 과정과 향후 N초 간의 트래픽을 예측하는 과정으로 구성된다. 실험을 위해 GOP의 크기가 각각 15인 세 가지 종류의 MPEG VBR 트래픽(뉴스, 드라마, 스포츠)을 제작하였고, 칼만 필터를 이용한 세 가지 종류의 트래픽의 예측 결과를 선형 예측법과 이중 지수 평활법을 이용해 예측한 결과와 비교해 예측 성능이 상대적으로 우수함을 확인할 수 있었다. 또한 예측값에 신뢰 구간을 설정하는 신뢰 구간 분석법을 통해 트래픽 관점에서 장면 변화를 예측하는 방법을 제시하였다. 본 논문의 칼만 필터 기반의 예측 알고리즘은 MPEG 기반 VBR 트래픽을 비롯한 기타 인터넷 트래픽을 실시간으로 예측하는 방법과 이를 이용해 인터넷 서버의 설계 및 자원 할당 정책 등을 위한 트래픽 엔지니어링 연구에 기여할 수 있을 것이다.

Keywords

References

  1. V. Frost and B. Melamed, 'Traffic Modeling for Telecommunications Networks,' IEEE Communications Magazine, pp. 70-81, Mar., 1994 https://doi.org/10.1109/35.267444
  2. M. Krunz and S. K. Tripathi, 'On the characterization of VBR MPEG Streams,' ACM SIGMETRICS Performance Eval. Rev., Vol. 25, pp. 192-202, June, 1997 https://doi.org/10.1145/258623.258688
  3. A. Adas, 'Traffic Models in Broadband Networks,' IEEE Communications Magazine, pp. 82-89, July, 1997 https://doi.org/10.1109/35.601746
  4. W. Willinger, D. V. Wilson an E. Leland, 'On the Self-Similarity Nature of Ethernet Traffic,' IEEE/ACM Trans. on Networking, Vol. 2, pp. 1-15, Jan., 1994 https://doi.org/10.1109/90.282603
  5. M. S. Taqqu, W. Willinger, J. Beran and R. Sherman, 'Long-Range Dependency in Variable-Bit-Rate Video Traffic,' IEEE Trans. on Communication, Vol. 43, pp. 1566-1579, Mar., 1995 https://doi.org/10.1109/26.380206
  6. Yao Liang, 'Real-time VBR Video Traffic Prediction for Dynamic Bandwidth Allocation,' IEEE Trans. on Systems, Vol. 34, No. 1, pp. 32-47, Feb., 2004 https://doi.org/10.1109/TSMCC.2003.818492
  7. Marwan Krunz and Herman Hughes, 'A Traffic Model for Mpeg-Coded VBR Streams,' ACM SIGMETRICS 95, pp. 47-55, 1995 https://doi.org/10.1145/223587.223592
  8. Bor-Sen Chen, Sen-Chueh Peng and Ku-Chen Wang, 'Traffic Modeling, Prediction, and Congestion Control for High-Speed Network: A Fuzzy AR Approach,' IEEE/ACM Trans. on Fuzzy System, Vol. 8, No. 5, pp. 491-508, Oct., 2000 https://doi.org/10.1109/91.873574
  9. B. Melamed and D. E. Pendarakis, 'Modeling Full-Length VBR Video using Markov-Renewal- Modulated TES Models,' IEEE/ACM Trans. on Networking, Vol. 5, pp. 600-612, 1997 https://doi.org/10.1109/TNET.1997.649520
  10. B. Maglaris, 'Performance Models of Statistical Multiplexing in Packet Video Communications,' IEEE Journal of Selected Areas in Communications, Vol. 36, pp. 834-844, July, 1988 https://doi.org/10.1109/26.2812
  11. Heyman D. P and Lakshman T. V., 'Source Models for VBR Broadcasting Video Traffic,' IEEE/ACM Trans. on Networking, Vol. 4, No. 1, pp. 40-48, Feb., 1996 https://doi.org/10.1109/90.503760
  12. J. P. Cosmos, A. Odinma-Okafor, R. Grunenfelder and S. Manthorpe, 'Characterization on Video Codecs as Auto Regressive Moving Average Process and Related Queueing System Performance,' IEEE Journal on Selected Areas in Communications, Vol. 9, pp. 284-293, Apr., 1991 https://doi.org/10.1109/49.76626
  13. Nirwan Ansari, Yun Q. Shi and Hai Liu, 'Modeling MPEG Coded Video Traffic by Markov- Modulated Self-Similar Process,' Journal of VLSI Signal Processing, Vol. 29, pp. 101-113, 2001 https://doi.org/10.1023/A:1011179732518
  14. David Tipper, Deep Medhi and Y. Qian, 'A Nonstationary Analysis of Bandwidth Access Control Schemes for Heterogeneous Traffic in B-ISDN,' Proc. of Infocom 96, pp. 730-737, 1996 https://doi.org/10.1109/INFCOM.1996.493370
  15. W. Wang, D. Tipper and S. Banerjee, 'A Simple Approximation for Modeling Nonstationary Queues,' Proc. of Infocom 96, pp. 255-262, 1996 https://doi.org/10.1109/INFCOM.1996.497901
  16. D. P. Heyman, 'The GBAR Source Model for VBR Videoconferences,' IEEE/ACM Trans. on Networking, Vol. 5, pp. 554-560, 1997 https://doi.org/10.1109/90.649513
  17. Michael Frey and Son Nguyen-Quang, 'A Gamma-based Framework for Modeling Variable-Rate MPEG Video Sources: The GOP GBAR Model,' IEEE/ACM Trans. on Netwokring, Vol. 8, No. 6, pp. 710-719, 2000 https://doi.org/10.1109/90.893868
  18. Youjip Won, Soohan Ahn and Joungwoo Jeon, 'Performace Analysis of Non-Stationary Model for Empirical VBR Process,' Globecom 01, 2001 https://doi.org/10.1109/GLOCOM.2001.966214
  19. S. Chong and S. Li, J. Ghosh, 'Efficient Transport of Real Time VBR Video over ATM via Dynamic Bandwidth Allocation,' IEEE Journal of Selected Areas in Communication, Vol. 13, pp. 12-23, Jan.,1995 https://doi.org/10.1109/49.363150
  20. X. Wang, S. Jung and J. Meditch, 'Dynamic Bandwidth Allocation for VBR Video Traffic using Adaptive Wavelet Prediction,' Proc. of IEEE International Conference on Communication, Vol. 1, pp. 549-553, 1998 https://doi.org/10.1109/ICC.1998.682934
  21. A. Adas, 'Using Adaptive Linear Prediction to Support Real-Time VBR Video under RCBR Network Service Model,' IEEE/ACM Trans. on Networking, Vol. 6, pp. 635-644, Oct., 1998 https://doi.org/10.1109/90.731200
  22. J. Hall and P. Mars, 'Limitations of Artificial Neural Networks for Traffic Prediction in Broad-band Networks,' Proc. of International Conference on Elec. Eng., Vol. 147, pp. 114-118, Apr., 2000 https://doi.org/10.1049/ip-com:20000146
  23. P. Chang and J. Hu, 'Optimal Nonlinear Adaptive Prediction and Modeling of MPEG Video in ATM Networks using Pipelined Recurrent Neural Networks,' IEEE Journal of Selected Areas Communications, Vol. 15, pp. 1087-1100, Aug., 1997 https://doi.org/10.1109/49.611161
  24. Aninda Bhattachary, Alexander G. Parlos and Amir F. Atiya, 'Prediction of MPEG-coded Video Source Traffic using Recurrent neural network,' IEEE Trans. on Signal Processing, Vol. 51, No. 8,pp. 2177-2190, Aug., 2003 https://doi.org/10.1109/TSP.2003.814470
  25. Peter J. Brockwell and Richard A. Davis, 'Introduction to Time Series and Forecasting,' Springer
  26. Laviola Jr and Joseph J, 'Double Exponential Smoothing: An Alternative to Kalman Filter-based Predictive Tracking,' The Eurographics Assosiaction, 2003