Quality Adaptation with Temporal Scalability for Efficient Video Streaming

효율적인 비디오 스트리밍을 위한 일시적인 확장성을 이용한 품질 적응 기법

  • 이선헌 (광운대학교 전자통신공학과) ;
  • 정광수 (광운대학교 전자통신공학과)
  • Published : 2007.06.15

Abstract

In video streaming applications over the Internet, TCP-friendly rate control schemes are useful for improving network stability and inter-protocol fairness. However it does not always guarantee a smooth quality for video streaming. To simultaneously satisfy both the network and application requirements, video streaming applications should be quality-adaptive. In this paper, we propose a new quality adaptation mechanism to adjust the quality of congestion controlled video stream by controlling the frame rate. Based on the current network condition, it controls the frame rate and sending rate of video stream. Through the simulation, we prove that our adaptation mechanism appropriately adjusts the quality of video stream while improving network stability.

인터넷을 통한 비디오 스트리밍 응용에서 TCP 친화적인 전송률 조절기법은 네트워크의 안정성을 향상시키고 프로토콜간의 형평성을 향상시킨다는 장점을 가진다. 하지만, 네트워크의 안정성 및 프로토콜간의 형평성 향상이 사용자에게 제공되는 스트리밍 서비스 품질의 향상을 의미하진 않는다. 비디오 스트리밍에서 네트워크의 안정성 향상과 동시에 사용자에게 제공되는 서비스 품질의 향상을 위해서는 네트워크 상태를 기반으로, 서비스되는 비디오 스트림의 품질을 적응적으로 변화시키는 기법이 적용되어야 한다. 본 논문에서는 현재 네트워크의 상태를 기반으로 서비스되는 비디오 스트림의 품질을 조절하는 새로운 품질 적응 기법을 제안하고자 한다. 제안하는 기법은 현재 네트워크 상태에 적합한 TCP 친화적인 전송률을 계산하고, 이를 기반으로 전송되는 비디오 스트림의 프레임율을 조절함으로써 네트워크 상태에 적응적으로 전송률 및 서비스 품질을 조절하게 된다. 실험 결과를 통해서 제안하는 기법이 네트워크의 안정성을 향상시킴과 동시에 네트워크 상태 적응적인 품질 변화를 통해 사용자에게 끊김없이 부드러운 스트리밍 서비스를 제공할 수 있음을 확인할 수 있었다.

Keywords

References

  1. S. Floyd and K. Fall, 'Promoting the use of end-to-end congestion control in the Internet,' IEEE/ACM Transactions on Networking, Vol. 7, pp. 458?472, 1999 https://doi.org/10.1109/90.793002
  2. R. Rejaie, M. Handley, and D. Estrin, 'RAP: An end-to-end rate based congestion control mechanism for real-time streams in the Internet,' IEEE INFOCOMM, 1999 https://doi.org/10.1109/INFCOM.1999.752152
  3. D. Bansal and H. Balakrishnan, 'Binomial congestion control algorithms,' IEEE INFOCOM, 2001 https://doi.org/10.1109/INFCOM.2001.916251
  4. I. Rhee, V. Ozdemir, and Y. Yi, 'TEAR: TCP emulation at receivers ? flow control for multimedia streaming,' Technical Report, NCSU, 2000
  5. S. Floyd, M. Handley, J. Padhye, and J. Widmer, 'Equation-based congestion control for unicast applications,' ACM SIGCOMM, 2000 https://doi.org/10.1145/347057.347397
  6. T. Kim and M. H. Ammar, 'Optimal quality adaptation for MPEG-4 fine-grained scalable video,' IEEE INFOCOM, 2003 https://doi.org/10.1109/INFCOM.2003.1208714
  7. D. Wu, Y. T. Hou, and Y. Q. Zhang, 'Transporting real-time video over the Internet: Challenges and approaches,' IEEE Conference, Vol. 88, pp. 1855?1877, 2000 https://doi.org/10.1109/5.899055
  8. J. Padhye, J. Kurose, D. Towsley, and R. Koodli, 'A model based TCP-friendly rate control protocol,' NOSSDAV, 1999
  9. J. Padhye, V. Firoiu, D. Towsley, and J. Kurpose, 'Modeling TCP throughput: A simple model and its empirical validation,' ACM SIGCOMM, 1998 https://doi.org/10.1145/285243.285291
  10. J. Bolot and T. Turletti, 'A rate control mechanism for packet video in the internet,' IEEE INFOCOM, pp. 1216?1223, 1994 https://doi.org/10.1109/INFCOM.1994.337568
  11. A. Ortega and M. Khansari, 'Rate control for video coding over variable bit rate channels with applications to wireless transmission,' IEEE Image Processing, 1995 https://doi.org/10.1109/ICIP.1995.537653
  12. W. Tan and A. Zakhor, 'Error resilient packet video for the internet,' IEEE Image Processing, 1998
  13. J. Lee, T. Kim, and S. Ko, 'Motion prediction based on temporal layering for layered video coding,' ITC-CSCC, Vol. 1, pp. 245?248, 1998
  14. S. McCanne, 'Scalable compression and transmission of internet multicast video,' Ph.D. thesis, University of California Berkeley, UCB/CSD-96- 928, 1996
  15. S. McCanne and M. Vetterli, 'Joint source/channel coding for multicast packet video,' IEEE Image Processing, pp. 776?785, 1995 https://doi.org/10.1109/ICIP.1995.529030
  16. M. Vishwanath and P. Chou, 'An efficient algorithm for hierarchical compression of video,' IEEE Image Processing, pp. 275-279, 1994 https://doi.org/10.1109/ICIP.1994.413844
  17. R. Rejaie, M. Handley, and D. Estrin, 'Quality adaptation for unicast audio and video,' ACM SIGCOMM, 1999 https://doi.org/10.1145/316194.316222
  18. R. Rejaie, M. Handley, and D. Estrin, 'Layered quality adaptation for Internet video streaming. IEEE Journal on Selected Areas of Communications, 2000 https://doi.org/10.1109/49.898735
  19. N. Feamster, D. Bansal, and H. Balakrishnan, 'On the interactions between layered quality adaptation and congestion control for streaming video,' Packet Video Workshop, 2001
  20. N. Wakamiya, M. Miyabayashi, M. Murata, and H. Miyahara, 'MPEG-4 video transfer with TCP-friendly rate control,' IFIP/IEEE MMNS, 2001
  21. T. Kim and M. H. Ammar, 'Optimal quality adaptation for scalable encoded video,' IEEE Journal on Selected Areas of Communications, 2005 https://doi.org/10.1109/JSAC.2004.839390
  22. S. Lee and K. Chung, 'TCP-friendly rate control scheme based on RTP,' ICOIN, 2006
  23. D. Sisalem and H. Schulzrinne, 'The loss-delay based adjustment algorithm: A TCP-friendly adaptation scheme,' NOSSDAV, 1998
  24. B. Song, K. Chung, and Y. Shin, 'SRTP: TCP-friendly congestion control for multimedia streaming,' ICOIN, 2002
  25. The network simulator ns-2, http://www.isi.edu/nanam/ns/