• Title/Summary/Keyword: Traditional Manufacturing

Search Result 777, Processing Time 0.032 seconds

Optimal Manufacturing Conditions for Korean Soybean Paste and Soy Sauce, Using Aspergillus oryzae AJ 100 as a Flavor Improver

  • Park, Hea-Kyeung;Kim, Jong-Kyu
    • Food Science and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.208-211
    • /
    • 2008
  • Previously, it has been reported that Aspergillus oryzae can efficiently degrade unpleasant odor components such as butyric acid and 3-methyl butanoic acid from meju, a major ingredient in both Korean soybean paste (doenjang) and soy sauce. In this study, the optimal manufacturing conditions for the production of superior quality Korean soybean paste and soy sauce were determined. Specifically, A. oryzae AJ 100 was utilized to improve the flavor of these products. Mixtures of Korean soybean paste and A. oryzae AJ 100 culture (2 : 1), and of Korean soy sauce and A. oryzae AJ 100 culture (5 : 1), were incubated for 2 weeks at $30^{\circ}C$, and showed improved flavor. Butyric acid and 3-methyl butanoic acid were clearly degraded under these culture conditions.

Vibration Electrochemical Polishing (VECP) for Improved Surface Defects of Stainless Steel (스테인리스강의 표면 결점 개선을 위한 진동 전기화학 폴리싱)

  • Kim, Uk Su;Park, Jeong Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.795-799
    • /
    • 2013
  • This paper describes a novel hybrid surface polishing process combining non-traditional electrochemical polishing (ECP) with external artificial ultrasonic vibration. The purpose of this study is to develop an easier method for improving stainless steel surfaces. To this end, vibration electrochemical polishing (VECP), a novel ultrasonic manufacturing process, for enhancing electrochemical reaction and surface quality compared with that achieved using conventional ECP is suggested. In addition, for finding the optimized experimental conditions, the two methods are compared under various current densities. Localized roughness of the work material is measured with atomic force microscopy (AFM) and scanning electron microscopy (SEM) for obtaining detailed surface information.

Least Square B-Spline Fitting For Surface Measurement (곡면 측정을 위한 최소 자승 비-스플라인 Fitting)

  • Jung, Jong-Yun;Lisheng Li;Lee, Choon-Man;Chung, Won-Jee
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.2
    • /
    • pp.79-85
    • /
    • 2003
  • An algorithm for fitting with Least Square is a traditional and an effective method in processing with experimental data. Due to the lack of definite representation, it is difficult to fit measured data with free curves or surfaces. B-Spline is usefully utilized to express free curves and surfaces with a few parameters. This paper presents the combination of these two techniques to process the point data measured from CMM and other similar instruments. This research shows tests and comparison of the simulation results from two techniques.

Design and Implementation of Computer-Based Training: A Quality Assurance Approach

  • Ellis, Ruel-L.A.;Persad, Prakash
    • International Journal of Quality Innovation
    • /
    • v.5 no.2
    • /
    • pp.26-44
    • /
    • 2004
  • Distance Education is a non-traditional mode of training and can take many forms, one of which is the use of Computer Based Training (CBT). This paper reviews various quality assurance models for designing the delivery of programmes at the universities and other training institutions. It presents the findings of a CBT research that is currently being carried out at the Department of Mechanical and Manufacturing Engineering, University of the West Indies, Trinidad. The significance of the research is discussed with particular emphasis on the influence of curricula sequencing on knowledge acquisition in learners of varying cognitive styles. The paper concludes that adherence to quality assurance principles could result in the enhanced performance of users of the CBT.

Dimensional Error Analysis of Products from LOM Process (LOM 공정에서의 제품 치수 오차 분석에 관한 연구)

  • 하성도;김경환;송용억;박태권;김창희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.89-96
    • /
    • 1998
  • LOM (Laminated Object Manufacturing) process is one of rapid prototyping processes, where shapes are formed by accumulating cross sections of laser-cut paper. The process expects wide popularity since it is simple and the material is familiar to conventional mockup makers. However the dimensional accuracy of LOM parts is not so good as that of traditional wooden mockups, since the stack of adhesive-spread papers causes significant dimensional error. Also it is unclear how the other unknown environmental effects cause the errors as well. In this work the dimensional errors of LOM parts are measured and analysed. Experiments with test parts were performed in order to see the effects of part shape, moist, and sealer on dimensional variations. The characteristic of the paper is also analysed. Re-heating LOM parts, which is shown to have the effect of recovering dimensional changes, is applied to an example part.

  • PDF

On Parallel Implementation of Lagrangean Approximation Procedure (Lagrangean 근사과정의 병렬계산)

  • 이호창
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.18 no.3
    • /
    • pp.13-34
    • /
    • 1993
  • By operating on many part of a software system concurrently, the parallel processing computers may provide several orders of magnitude more computing power than traditional serial computers. If the Lagrangean approximation procedure is applied to a large scale manufacturing problem which is decomposable into many subproblems, the procedure is a perfect candidate for parallel processing. By distributing Lagrangean subproblems for given multiplier to multiple processors, concurrently running processors and modifying Lagrangean multipliers at the end of each iteration of a subgradient method,a parallel processing of a Lagrangean approximation procedure may provide a significant speedup. This purpose of this research is to investigate the potential of the parallelized Lagrangean approximation procedure (PLAP) for certain combinational optimization problems in manufacturing systems. The framework of a Plap is proposed for some combinatorial manufacturing problems which are decomposable into well-structured subproblems. The synchronous PLAP for the multistage dynamic lot-sizing problem is implemented on a parallel computer Alliant FX/4 and its computational experience is reported as a promising application of vector-concurrent computing.

  • PDF

A Mechanism of Automated Manufacturing Processes for Classical String Musical Instruments (현악기 제조 자동화시스템 구축을 위한 Mechanism 설계)

  • Jeon, Tae-Bo;Yun, Kyong-Su
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.321-329
    • /
    • 1999
  • An automated manufacturing process mechanism for string musical instruments has been designed in this study. In contrast to other manufacturing products, classical string instruments try to preserve their traditional design shapes even in these days and involve variety of wood working(carpentry) characteristics including highly skilled curved surfaces treatments. Great efforts have been put to develop an integrated and automated system for improved product quality and process control, reduced physical labors, better safety etc. They, however, have been limited to devise jigs and tools with regard to selected processes due to lack of technology and research man-powers. We carefully examined the products and process characteristics, and an automated mechanism which overcome prevailing drawbacks has been derived.

  • PDF

Measurement of Material Properties for Miniature Stamping (미세 스탬핑용 박판소재의 물성치 측정)

  • Kim Y.S.;Shim H.B.
    • Transactions of Materials Processing
    • /
    • v.15 no.3 s.84
    • /
    • pp.247-254
    • /
    • 2006
  • Rather than traditional manufacturing processes, miniature manufacturing processes usually require sophisticated equipments and characteristics of the processes of high cost and of low productivity. Contrarily, miniature stamping process can be realized in a low cost high productivity with relatively inexpensive equipments. In the meso scale, mechanical properties, especially work hardening characteristics, are discovered to be statically scattered and size dependent by intensive experimental and numerical investigations, which make the stamping process hard to apply to the miniature manufacturing. In this study, dual purpose experimental device that can be used for both miniature scale tensile test and miniature scale stamping by simple change of attachment has been developed. For the tensile test, the elongation has been measured with a combined use of a CCD camera and a linear encoder in order to account for the possibility of slippage between specimen and the grip and to ensure the accuracy of the measurement, while load has been measured with a load cell. To satisfy the required material properties for stamping, optimal annealing condition has been found by examining the microstructure of annealed specimen.

A Study on the Optimization of Position Tolerance of Fasteners Considering Process Capability (공정능력을 고려한 체결구 부품의 위치공차 최적화 방법 연구)

  • Lee, Sang-Hyun;Lee, Tae-Gun;Chang, Sung-Ho
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2008.04a
    • /
    • pp.417-428
    • /
    • 2008
  • Designers have to consider voice of customer, process capability, manufacturing standards & condition, manufacturing method, characteristics of products to decide tolerances. Especially, in case of position of hole and pin, designers have to consider process capability to decide tolerances. The traditional position tolerances used in a drawing are theoretical values which are allocated to position under the worst case assembling condition that both hole and pin are the maximum material condition(MMC). However, When the process capability is high, more exact product size can be produced under stable manufacturing condition. larger clearance of hole and pin can be allocated. In this point of view, manufacturer could increase the yield by allocating larger position tolerance than theoretical position tolerance of hole and pin considering process capability.

  • PDF

A Study on the Optimization of Position Tolerance of Fasteners Considering Process Capability (공정능력을 고려한 체결구 부품의 위치공차 최적화 방법 연구)

  • Lee, Sang-Hyun;Lee, Tae-Geun;Chang, Sung-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.1
    • /
    • pp.75-85
    • /
    • 2009
  • Designers have to consider voice of customer, process capability, manufacturing standards & condition, manufacturing method and characteristics of products to decide tolerances. Especially, in case of position of hole and pin, designers have to consider process capability to decide tolerances. The traditional position tolerances used in a drawing are theoretical values which are allocated to position under the worst case assembling condition that both hole and pin are the maximum material condition(MMC). However, when the process capability is high, more exact product size can be produced under stable manufacturing condition. Larger clearance of hole and pin can be allocated. In this point of view, manufacturer could increase the yield by allocating larger position tolerance than theoretical position tolerance of hole and pin considering process capability.