• 제목/요약/키워드: Tractor Engineering

검색결과 399건 처리시간 0.032초

위치(位置) 측정장치(測定裝置)를 이용한 트랙터의 자동(自動) 주행장치(走行裝置) (Automatic Guidance System for Tractor based upon Position-measurement Systems)

  • 최창현
    • Journal of Biosystems Engineering
    • /
    • 제15권2호
    • /
    • pp.79-87
    • /
    • 1990
  • An automatic guidance system based upon two position-measurement systems was designed to record where the tractor traveled and to guide the tractor along the predetermined path. An algorithm, using the kinematic behavior of tractor movement, was developed to determine the steering angle to reduce lateral position error. The algorithm was based upon constant travel speed, constant steering rate, and zero slip angles of the tractor wheels. The algorithm was evaluated through use of computer simulation and verified in field experiments. Results showed that the distance interval between position measurements was an important factor in guidance system performance. The position-measurement error of the guidance system must be less than 5 cm to be acceptably precise for field operations. An algorithm based upon a variable steering rate might improve the stability of the guidance system. More accurate measurement of tractor position and yaw angle, and faster error processing are required to improve the field performance of the guidance system.

  • PDF

퍼지논리와 유전알고리즘을 이용한 트랙터-트레일러의 후진제어 시뮬레이션 (Backward Control Simulation of Tractor-Trailer Using Fuzzy Logic and Genetic Algorithms)

  • 조성인;기노훈
    • Journal of Biosystems Engineering
    • /
    • 제20권1호
    • /
    • pp.87-94
    • /
    • 1995
  • When farmer loads and unloads farm products with a trailer, linked to a tractor, the tractor-trailer is backed up to the loading duck. However, travelling backward is not easy and takes a time for even skilled operators. Therefore, unmanned backing up is necessary to save the effort. A backward controller of tractor-trailer was simulated using fuzzy logic and genetic algorithms. Operators drive the tractor-trailer back and forth several times for backing up to the loading duck. As the operators did it, a backward controller was designed using fuzzy logic. And genetic algorithms was applied to improve the performance of the backward controller. With the strings coded with the fuzzy membership functions, genetic operations were carried out. After 30 generations, the best fitted fuzzy membership functions were found. Those membership functions were used in the fuzzy backward controller. The fuzzy controller combined with genetic algorithms showed the better results than the fuzzy controller did alone.

  • PDF

COMPUTER SIMULATION OF TRACTOR PERFORMANCE WITH REGARD TO ENERGY SAVING AND POLLUTION REDUCING

  • Zou, Cheng;Sakai, Jun;Nagata, Masateru
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1993년도 Proceedings of International Conference for Agricultural Machinery and Process Engineering
    • /
    • pp.1110-1116
    • /
    • 1993
  • A study on optimum operation performances of power efficiency, economy and exhaust emissions for a tractor was conducted. A mathematical model of multiple degree polynomial equation was applied to established the function of solid multiple parameter curves for specific fuel consumption (ge), cabon monoxide (CO) ,hydrcarbons (HC) and cabonaceous smoke (Rb). The optimum operation theorems for economy operation indicated by ge and for exhaust emissions described by Co , HC and Rb were obtained from analytical method and performance test data. The optimum operation theorems could exhibit optimum operation working points, curves, and regions. The optimum matching relations of engine speed and transmission parameters were analyzed by using computer simulation methods in accordance with the tractor specifications , actual farm working conditions in a typical drawbar pull work such as plowing , the optimum operation objective function, the ideal transmission ratio, practical gear shif ing positions and practical travel speed of the tractor TN55 medel. The results of the anlayzes indicated clearly that the optimum power efficient operation, energy saving and pollution reducing would be realized if the tractor would be operated according to theoptimum operation methods.

  • PDF

Analysis of The Lateral Motion of Tractor-Trailer Combination (I) Operator/Vehicle System Model for Forward Maneuver

  • Torisu, R.;Mugucia, S.W.;Takeda, J.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1993년도 Proceedings of International Conference for Agricultural Machinery and Process Engineering
    • /
    • pp.1137-1146
    • /
    • 1993
  • In order to analyze lateral control in the forward manuever of a tractor- trailer combination , a human operator model and a kinematic vehicle model were utilized for the operator/vehicle system. By combining the vehicle and operator models, a mathematical model of the closed-loop operator/vehicle system was formulated. A computer program was developed so as to simulate the motion of the tractor-trailer combination . In order to verify the operator/vehicle system model, the results of the field trials were compared with the simulated results. There was found to be reasonably good agreement between the two.

  • PDF

3점 히치 장착형 암식 작업기의 전자유압특성 분석 (Electro-hydraulic Characteristic Analysis of Arm-type Implement for Three-point Hitch)

  • 이상식;박원엽
    • Journal of Biosystems Engineering
    • /
    • 제36권5호
    • /
    • pp.314-318
    • /
    • 2011
  • Arm-type implements of tractor are mainly utilized for the slope land operation. The proposed hydraulic system was implemented to arm-type implements of tractor. An experiment was conducted to evaluate response characteristics of the designed arm-type implement control system attached by three-point hitch of tractor at various conditions, such as engine speed, pumping rate and cylinder input flow. Effects of the valve response time didn't affect engine speed. The flow rate of pump and cylinder changed to the pressure loss. Also, the pressure loss was within 2 MPa and the response characteristic was sufficient enough to use as the arm-type implement system.

LOAD CHARACTERISTICS OF ROTARY OPERATION BY TRACTOR IN WET PADDY FIELDS

  • Y. G. Wu;Kim, K. U.;Y. K. Jung
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.II
    • /
    • pp.101-108
    • /
    • 2000
  • The torque loads were measured at the input shaft of the transmission and driving shaft of the tractor having a cage wheel attached to the driving tires as a traction aid during. a rotavating operation in wet paddy fields with deep hardpan. Their load spectra were also calculated. Effects of design parameters of the cage wheel on the load characteristics were analyzed. The torque load exerted on the input shaft decreased as diameter of the cage wheel increased and increased as the rotating speed of the rotavator increased. The torque load exerted on the driving shaft increased as the working speed of the tractor increased and decreased as the PTO speed increased. Both the torque loads with the cage wheel were greater than those without the cage wheel. The cage wheel was developed for this study.

  • PDF

Map-Based Control for Autonomous Tractors

  • Han, S.;Shin, B.S.;Zhang, Q.
    • Agricultural and Biosystems Engineering
    • /
    • 제4권1호
    • /
    • pp.22-27
    • /
    • 2003
  • An autonomous tractor requires not only automatic steering (automatic guidance) but also automated control of tractor functions and implement operations. Examples of tractor functions include engine throttle, transmission speed, and 3-point hitch position. Implement operations include tillage, planting, and cultivating. This article provides an overview of a map-based methodology used for the implementation of autonomous field operations of agricultural tractors. The procedure for developing autonomous field operation maps were presented, and several important issues in the implementation of map-based autonomous operations were discussed. These issues included combining field operation maps, position offset, and real-time sensing and update of field operation maps.

  • PDF

동하중 모형을 이용한 트랙터 전동라인의 치타음 분석 (Analysis of Gear Rattle Using a Dynamic Load Model of Agricultural Tractor Driveline)

  • 류일훈;김경욱
    • Journal of Biosystems Engineering
    • /
    • 제27권5호
    • /
    • pp.371-380
    • /
    • 2002
  • The objectives of this study were to analyze gear rattle in a power drive line using its dynamic model and to derive design guidelines to eliminate it. A 72 degrees of freedom model of power driveline of an agricultural tractor was developed and proved to be valid fer predicting the collision characteristics of gears in mesh, which may determine whether or not the gear rattle will occur. Using the model the effects on the rattle of drag torque, backlash, mass moment of inertia, transmitting torque were analyzed. Increasing drag torque or decreasing mass moment of inertia reduced gear rattle. The gears transmitting power do not develop rattles. It was also found that a large amount of rattle is likely to be developed by the change gears placed at the end of idle shafts. Increasing the drag torque to such change gears may be the most effective way of reducing the gear rattle in a tractor driveline.

Effect of tractor travelling speed on a tire slip

  • Kim, Yeon Soo;Lee, Sang Dae;Kim, Young Joo;Kim, Yong Joo;Choi, Chang Hyun
    • 농업과학연구
    • /
    • 제45권1호
    • /
    • pp.120-127
    • /
    • 2018
  • The rural labor force has gradually been decreasing due to the decrement of the farm population and the increment of the aging population. To solve these problems, it is necessary to develop and study autonomous agricultural machinery. Therefore, analyzing the dynamic behavior of vehicles in an autonomous agricultural environment is important. Until now, most studies on agricultural machinery, especially on ground vehicle dynamics, have been done by field tests. However, these field test methods are time consuming and costly with seasonal restrictions. A research method that can replace existing field test methods by using simulations is needed. In this study, we did basic research analyzing the effect of the travelling speed of a tractor on tire slip using simulation software. A tractor simulation model was developed based on field conditions following a straight path. The simulation was done for three ranges of speed: 20 - 30 km/h (considered the normal travelling speed range), 6 - 8 km/h (considered the plow tillage speed range) and 2 - 4 km/h (considered the rotary tillage speed range). The results of the simulation show that the slip ratio and slip angle values tended to increase as the traveling speed range of the tractor decreased. From the simulation results, it can be concluded that at low tractor speeds, it becomes more difficult to control the vehicle path. In future research, simulations will be done with various work environments such as a curved path as well as with various friction coefficient conditions, and the simulation results will be experimentally verified by applying them to an agricultural tractor.