• Title/Summary/Keyword: Tracking observer

Search Result 237, Processing Time 0.031 seconds

Disturbance Observer Based Sliding Mode Control for Link of Manipulator Driven by Elastic Cable (탄성 케이블로 구동되는 조작기 링크의 외란 관측기 기반 슬라이딩모드 제어)

  • Kang, Min-Sig
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.10
    • /
    • pp.949-958
    • /
    • 2012
  • Position tracking control of a link of a slave manipulator which needed to track the corresponding link of a master manipulator was addressed in this paper. Since driving torque from motor is transmitted through a set of flexible cable to link, the motion control system is modeled by a two-mass model connected with elastic coupling which has finite stiffness. Relative vibration of two-mass resonant system is a serious problem to operate manipulator. This paper proposed sliding mode control to reduce resonant vibration and fine position tracking control. Also, a pseudo-sliding mode control which uses a saturation function instead of a signum function was discussed and showed that the pseudo-sliding mode control can improve disturbance regulation performance as well as guarantees fine command tracking without chattering which is an inherent drawback of basic sliding mode control. In addition, a disturbance observer based sliding mode control has been suggested to improve disturbance regulation performance. The feasibility of the proposed control design was verified along with some simulation results.

Development of sliding mode controller for robot manipulators using sliding mode observer (슬라이딩 모드 관측기를 이용한 로봇 매니퓰레이터를 위한 슬라이딩 모드 제어기의 개발)

  • 박강박;이주장
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.289-292
    • /
    • 1997
  • In this paper, a continuous sliding mode controller for robot manipualator is proposed. The proposed scheme guarantees that the tracking error converges to zero maintaining the smoothness of the actual control signal. In order to estimate the acceleration data, a sliding mode observer is used, and the stability of the closed-loop system is shown.

  • PDF

Speed and position control of the AC motor using variable structure controller with disturbance observer (외란 관측자와 가변구조제어기를 이용한 AC 서보모터의 속도 및 위치 제어)

  • 은용순;김광수;조동일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.652-655
    • /
    • 1996
  • This paper develops an AC motor controller for applications. The AC motor controller is designed based on the variable structure control method and a variable structure disturbance observer is added to reduce the effects of exogenous disturbances. The designed controller is installed on the z-axis of a CNC machining center and milling experiments were performed. The results show improved performance on both position and speed tracking, when compared to the factory-designed servo controller.

  • PDF

Robust Sliding Mode Friction Control with Adaptive Friction Observer and Recurrent Fuzzy Neural Network

  • Shin, Kyoo-Jae;Han, Seong-I.
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.2
    • /
    • pp.125-130
    • /
    • 2009
  • A robust friction compensation scheme is proposed in this paper. The recurrent fuzzy neural network and friction parameter observer are developed with sliding mode based controller in order to obtain precise position tracking performance. For a servo system with incomplete identified friction parameters, a proposed control scheme provides a satisfactory result via some experiment.

Second order integral sliding mode observer and controller for a nuclear reactor

  • Surjagade, Piyush V.;Shimjith, S.R.;Tiwari, A.P.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.552-559
    • /
    • 2020
  • This paper presents an observer-based chattering free robust optimal control scheme to regulate the total power of a nuclear reactor. The non-linear model of nuclear reactor is linearized around a steady state operating point to obtain a linear model for which an optimal second order integral sliding mode controller is designed. A second order integral sliding mode observer is also designed to estimate the unmeasurable states. In order to avoid the chattering effect, the discontinuous input of both observer and controller are designed using the super-twisting algorithm. The proposed controller is realized by combining an optimal linear tracking controller with a second order integral sliding mode controller to ensure minimum control effort and robustness of the closed-loop system in the presence of uncertainties. The condition for the selection of gains of discontinuous control based on the super-twisting algorithm is derived using a strict Lyapunov function. Performance of the proposed observer based control scheme is demonstrated through non-linear simulation studies.

Backstepping Control of Output-feedback Systems Using Cascade Observer (축차 관측기를 이용한 출력 피이드백 시스템의 백스테핑 제어)

  • Kim, Eung-Seok;Kim, Dong-Hun;Hyun, Keun-Ho;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2237-2239
    • /
    • 2001
  • Backstepping procedures for output-feedback of nonlinear systems are considered. For these systems, a sliding mode cascade observer to estimate derivatives of the output is builded. In the 1st step of the observer, the output is estimated, and the 1st order derivative of the output is estimated via the 2nd step of the observer. Also, n-th order derivative of the output is estimated in the n+1th step of the observer. Observer errors and tracking errors converge to a residual set close to zero asymptotically.

  • PDF

Disturbance Observer-Based Control for 6-DOF Remotely Operated Underwater Vehicle with Model Uncertainties (모델 불확실성을 갖는 6자유도 원격조종 수중로봇의 외란 관측기 기반 제어)

  • Junsik Kim;Dongchul Lee;Youngjin Choi
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.1
    • /
    • pp.82-87
    • /
    • 2023
  • This paper proposes a disturbance observer-based control for 6-DOF remotely operated underwater vehicles with model uncertainties. The sum of external disturbance and the forces generated from model parameters except for the inertial matrix of the hydrodynamic model is defined as a lumped disturbance in this paper. Then, the lumped disturbance caused by model uncertainties and the external forces is estimated using the disturbance observer. Fortunately, the disturbance observer is constructed as a linear form because all the elements of the inertial matrix of the hydrodynamic model are constants. To verify the proposed control scheme, we show that the actual lumped disturbance is similar to the estimated lumped disturbance obtained by the disturbance observer. Finally, the position tracking performance in the disturbance environment is confirmed through the comparative study with a traditional inverse dynamics PD controller.

Optimal Tuning of Linear Servomechanisms using a Disturbance Observer (외란관측기를 이용한 리니어 서보메커니즘의 최적튜닝)

  • Hong, Seong-Hwan;Chung, Sung-Chong
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.926-931
    • /
    • 2008
  • In order to design a high-performance controller with excellent positioning and tracking performance, an optimal tuning method based on the integrated design concept is studied. DOBs, feedforward controllers and CCC are applied to control the bi-axial linear servomechanism. To derive accurate dynamic models of mechanical subsystems equipped with linear servos for the integrated tuning, system identification processes are conducted through the sine sweeping. An optimal tuning problem with stability, robustness and overshoot constraints is formulated as a nonlinear constrained optimization problem. Optimal gains are obtained through the SQP method. Experimental results confirm that both tracking and contouring errors are significantly reduced by applying the proposed controller and integrated tuning method.

  • PDF

An Improved Predictive Functional Control with Minimum-Order Observer for Speed Control of Permanent Magnet Synchronous Motor

  • Wang, Shuang;Fu, Junyong;Yang, Ying;Shi, Jian
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.272-283
    • /
    • 2017
  • In this paper, an improved predictive functional control (PFC) scheme for permanent magnet synchronous motor (PMSM) control system is proposed, on account of the standard PFC method cannot provides a satisfying disturbance rejection performance in the case of strong disturbances. The PFC-based method is first introduced in the control design of speed loop, since the good tracking and robustness properties of the PFC heavily depend on the accuracy of the internal model of the plant. However, in orthodox design of prediction model based control method, disturbances are not considered in the prediction model as well as the control design. A minimum-order observer (MOO) is introduced to estimate the disturbances, which structure is simple and can be realized at a low computational load. This paper adopted the MOO to observe the load torque, and the observations are then fed back into PFC model to rebuild it when considering the influence of perturbation. Therefore, an improved PFC strategy with torque compensation, called the PFC+MOO method, is presented. The validity of the proposed method was tested via simulation and experiments. Excellent results were obtained with respect to the speed trajectory tracking, stability, and disturbance rejection.

Robust Adaptive Back-stepping Control Using Dual Friction Observer and RNN with Disturbance Observer for Dynamic Friction Model (외란관측기를 갖는 RNN과 이중마찰관측기를 이용한 동적마찰모델에 대한 강인한 적응 백-스테핑제어)

  • Han, Seong-Ik
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.50-58
    • /
    • 2009
  • For precise tracking control of a servo system with nonlinear friction, a robust friction compensation scheme is presented in this paper. The nonlinear friction is difficult to identify the friction parameters exactly through experiments. Friction parameters can be also varied according to contact conditions such as the variation of temperature and lubrication. Thus, in order to overcome these problems and obtain the desired position tracking performance, a robust adaptive back-stepping control scheme with a dual friction observer is developed. In addition, to estimate lumped friction uncertainty due to modeling errors, a DEKF recurrent neural network and adaptive reconstructed error estimator are also developed. The feasibility of the proposed control scheme is verified through the experiment fur a ball-screw system.