• Title/Summary/Keyword: Tracking Status

Search Result 170, Processing Time 0.034 seconds

Tracking Performance Improvement of the Double-Talk Robust Algorithm for Network Echo Cancellation (네트워크 반향제거를 위한 동시통화에 강인한 알고리듬의 추적 성능 개선)

  • Yoo, Jae-Ha
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.195-200
    • /
    • 2012
  • We present a new algorithm which can improve the tracking performance of the double-talk robust algorithm. A detection method of the echo path change and a modification method for the update equation of the conventional adaptive filter are proposed. A duration of the high error signal to scale parameter ratio varies according to the call status and this property is used to detect the echo path change. The proposed update equation of the adaptive filter improves the tracking performance by prohibiting wrong selection of the error signal. Simulations using real speech signals and echo paths of the ITU-T G.168 standard confirmed that as compared to the conventional algorithm, the proposed algorithm improved the tracking performance by more than 4 dB.

Flight trajectory generation through post-processing of launch vehicle tracking data (발사체 추적자료 후처리를 통한 비행궤적 생성)

  • Yun, Sek-Young;Lyou, Joon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.6
    • /
    • pp.53-61
    • /
    • 2014
  • For monitoring the flight trajectory and the status of a launch vehicle, the mission control system in NARO space center process data acquired from the ground tracking system, which consists of two tracking radars, four telemetry stations, and one electro-optical tracking system. Each tracking unit exhibits its own tracking error mainly due to multi-path, clutter and radio refraction, and by utilizing only one among transmitted informations, it is not possible to determine the actual vehicle trajectory. This paper presents a way of generating flight trajectory via post-processing the data received from the ground tracking system. The post-processing algorithm is divided into two parts: compensation for atmosphere radio refraction and multi-sensor fusion, for which a decentralized Kalman filter was adopted and implemented based on constant acceleration model. Applications of the present scheme to real data resulted in the flight trajectory where the tracking errors were minimized than done by any one sensor.

Multi-mode Kernel Weight-based Object Tracking (멀티모드 커널 가중치 기반 객체 추적)

  • Kim, Eun-Sub;Kim, Yong-Goo;Choi, Yoo-Joo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.21 no.4
    • /
    • pp.11-17
    • /
    • 2015
  • As the needs of real-time visual object tracking are increasing in various kinds of application fields such as surveillance, entertainment, etc., kernel-based mean-shift tracking has received more interests. One of major issues in kernel-based mean-shift tracking is to be robust under partial or full occlusion status. This paper presents a real-time mean-shift tracking which is robust in partial occlusion by applying multi-mode local kernel weight. In the proposed method, a kernel is divided into multiple sub-kernels and each sub-kernel has a kernel weight to be determined according to the location of the sub-kernel. The experimental results show that the proposed method is more stable than the previous methods with multi-mode kernels in partial occlusion circumstance.

Current Status of KASI Solar Radio Observing System

  • Bong, Su-Chan;Hwangbo, Jung-Eun;Park, Sung-Hong;Park, Jongyeob;Park, Young Deuk;Lee, Dae-Young
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.64.2-64.2
    • /
    • 2013
  • Korea Astnonomy and Space Science Institute (KASI) operates two solar radio observing facilities, the Korean station of the e-CALLISTO and the Korean Solar Radio Burst Locator (KSRBL). The e-CALLISTO station had suffered from tracking problem for past several years. Since 2011, KASI has developed a new tracking system, and recently the antenna has regained the its sun-tracking capability and full day-time coverage. The KSRBL also suffered from the control computer breakdown last year. After one year of operational gap, the KSRBL restored its normal daily observation. We also expanded the data server storage capacity, to store the full original data of 25 ms integration time and 0.25 MHz frequency resolution, amounting to about 80 GB per day.

  • PDF

A Study on The PV System with Solar Tracking (태양광추적장치를 이용한 태양광발전시스템의 연구)

  • Oh, M.B.;Kang, S.Y.;Na, J.D.;Kim, B.C.;Cho, G.B.;Baek, H.L.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.717-719
    • /
    • 2005
  • This paper summarizes the results of these efforts by of offering the PV generation system with solar tracking. The status of PV generation system with solar tracking components and interconnection and effects are summarized. Hence this paper duscusses only points that might be useful for application.

  • PDF

Implementation of Slaving Data Processing Function for Mission Control System in Space Center (우주센터 발사통제시스템의 추적연동정보 처리기능 구현)

  • Choi, Yong-Tae;Ra, Sung-Woong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.3
    • /
    • pp.31-39
    • /
    • 2014
  • In KSLV-I launch mission, real-time data from the tracking stations are acquired, processed and distributed by the Mission Control System to the user group who needed to monitor processed data for safety and flight monitoring purposes. The processed trajectory data by the mission control system is sent to each tracking system for target designation in case of tracking failure. Also, the processed data are used for decision making for flight termination when anomalies occur during flight of the launch vehicle. In this paper, we propose the processing mechanism of slaving data which plays a key role of launch vehicle tracking mission. The best position data is selected by predefined logic and current status after every available position data are acquired and pre-processed. And, the slaving data is distributed to each tracking stations through time delay is compensated by extrapolation. For the accurate processing, operation timing of every procesing modules are triggered by time-tick signal(25ms period) which is driven from UTC(Universial Time Coordinates) time. To evaluate the proposed method, we compared slaving data to the position data which received by tracking radar. The experiments show the average difference value is below 0.01 degree.

Design of a 3-D Adaptive Sampling Rate Tracking Algorithm for a Phased Array Radar (위상배열 레이다를 위한 3차원 적응 표본화 빈도 추적 알고리듬의 설계)

  • Son, Keon;Hong, Sun-Mog
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.5
    • /
    • pp.62-72
    • /
    • 1993
  • The phased array antenna has the ability to perform adaptive sampling by directing the radar beam without inertia in any direction. The adaptive sampling capability of the phased array antenna allows each sampling time interval to be varied for each target, depending on the acceleration of each target at any time. In this paper we design a three dimensional adaptive target tracking algorithm for the phased array radar system with a given set of measurement parameters. The tracking algorithm avoids taking unnecessarily frequent samples, while keeping the angular prediction error within a fraction of antenna beamwidth so that the probability of detection will not be degraded during a track updata illuminations. In our algorithm, the target model and the sampling rate are selected depending on the target range and the target maneuver status which is determined by a maneuver level detector. A detailed simulation is conducted to test the validity of our tracking algorithm for target trajectories under various conditions of maneuver.

  • PDF

Vision-based Ground Test for Active Debris Removal

  • Lim, Seong-Min;Kim, Hae-Dong;Seong, Jae-Dong
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.279-290
    • /
    • 2013
  • Due to the continuous space development by mankind, the number of space objects including space debris in orbits around the Earth has increased, and accordingly, difficulties of space development and activities are expected in the near future. In this study, among the stages for space debris removal, the implementation of a vision-based approach technique for approaching space debris from a far-range rendezvous state to a proximity state, and the ground test performance results were described. For the vision-based object tracking, the CAM-shift algorithm with high speed and strong performance, and the Kalman filter were combined and utilized. For measuring the distance to a tracking object, a stereo camera was used. For the construction of a low-cost space environment simulation test bed, a sun simulator was used, and in the case of the platform for approaching, a two-dimensional mobile robot was used. The tracking status was examined while changing the position of the sun simulator, and the results indicated that the CAM-shift showed a tracking rate of about 87% and the relative distance could be measured down to 0.9 m. In addition, considerations for future space environment simulation tests were proposed.

Asset Localization in Wireless Sensor Networks

  • Jo, Jung-Hee;Kim, Kwang-Soo;Kim, Sun-Joong
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.465-471
    • /
    • 2007
  • Many hospitals have been considering new technology such as wireless sensor network(WSN). The technology can be used to track the location of medical devices needed for inspections or repairs, and it can also be used to detect of a theft of an asset. In an asset-tracking system using WSN, acquiring the location of moving sensor nodes inherently introduces uncertainty in location determination. In fact, the sensor nodes attached to an asset are prone to failure from lack of energy or from physical destruction. Therefore, even if the asset is located within the predetermined area, the asset-tracking application could "misunderstand" that an asset has escaped from the area. This paper classifies the causes of such unexpected situations into the following five cases: 1) an asset has actually escaped from a predetermined area; 2) a sensor node was broken; 3) the battery for the sensor node was totally discharged; 4) an asset went into a shadow area; 5) a sensor node was stolen. We implemented and installed our asset-tracking system in a hospital and continuously monitored the status of assets such as ventilators, syringe pumps, wheel chairs and IV poles. Based on this real experience, we suggest how to differentiate each case of location uncertainty and propose possible solutions to prevent them.

A Surveillance System Combining Model-based Multiple Person Tracking and Non-overlapping Cameras (모델기반 다중 사람추적과 다수의 비겹침 카메라를 결합한 감시시스템)

  • Lee Youn-Mi;Lee Kyoung-Mi
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.12 no.4
    • /
    • pp.241-253
    • /
    • 2006
  • In modem societies, a monitoring system is required to automatically detect and track persons from several cameras scattered in a wide area. Combining multiple cameras with non-overlapping views and a tracking technique, we propose a method that tracks automatically the target persons in one camera and transfers the tracking information to other networked cameras through a server. So the proposed method tracks thoroughly the target persons over the cameras. In this paper, we use a person model to detect and distinguish the corresponding person and to transfer the person's tracking information. A movement of the tracked persons is defined on FOV lines of the networked cameras. The tracked person has 6 statuses. The proposed system was experimented in several indoor scenario. We achieved 91.2% in an averaged tracking rate and 96% in an averaged status rate.