• 제목/요약/키워드: Track support stiffness

검색결과 45건 처리시간 0.028초

교량/토공 접속구간 보강레일의 최적설계 (Optimal Design of Reinforced Rail over Connection Section of Bridge and Embankment)

  • 양신추;강윤석;김은
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 춘계학술대회 논문집
    • /
    • pp.256-263
    • /
    • 2002
  • This paper deal with optimal design of reinforced track as a track reinforcing method for transition area of track support stiffness in transition area between bridge and earthwork. When vehicle passes through transition area, dynamic properties between vehicle and track are studied by the analysis of vehicle-train interaction for the each case when reinforced tracks are used or not. furthermore, optimum decision of type and length of track are made based on the performance adapting variable parameters : support stiffness of track for bridge and earthwork, heading direction of vehicle and type and length of track.

  • PDF

도시철도 침목플로팅궤도(STEDEF)의 침목방진패드 피로거동 분석 (Evaluation on Fatigue Behavior of Resilience pad for Sleeper Floating Track System in Urban Transit)

  • 최정열;이정숙;봉재근;김수진;정지승
    • 문화기술의 융합
    • /
    • 제6권3호
    • /
    • pp.347-352
    • /
    • 2020
  • 본 연구는 현장측정결과를 바탕으로 도시철도 침목플로팅궤도 (STEDEF)에 사용되는 침목방진패드의 스프링 강성 변화율에 따른 궤도충격계수 변화수준의 경향성을 분석하고, 현장측정결과와 실내 700만회 피로시험결과의 상관관계를 입증하였다. 또한 도시철도 STEDEF 궤도구조에 사용되는 침목방진패드의 비선형 피로거동특성이 고려된 침목방진패드의 피로영향선도를 제시하였다. 현장측정결과를 바탕으로 분석한 궤도충격계수-궤도지지강성 선도의 침목방진패드 스프링강성 변화율 30% 이상에 대한 궤도충격계수의 비선형 특성이 피로시험결과와 일치하는 것으로 분석되었다. 대부분의 침목방진패드 시료에서 침목방진패드 규격서에서 명시한 정, 동적 스프링강성 기준치를 상회하는 수준으로 나타났으며, 작은 하중범위에서의 변위가 큰 침목방진패드의 소재적인 특성을 감안할 때 열차하중을 부담하는 침목방진패드의 전체적인 탄성변위량이 클수록 연행집중하중으로 작용하는 열차 하중에 의한 탄성변위의 회복속도가 늦어지고 탄성변위향은 작아지게 되므로 정적 대비 동적 스프링 강성의 비가 커지게 된는 것으로 분석되었다.

A comparison between the dynamic and static stiffness of ballasted track: A field study

  • Mosayeb, Seyed-Ali;Zakeri, Jabbar-Ali;Esmaeili, Morteza
    • Geomechanics and Engineering
    • /
    • 제11권6호
    • /
    • pp.757-769
    • /
    • 2016
  • Rail support modulus is an important parameter for analysis and design of ballasted railway tracks. One of the challenges in track stiffness assessment is its dynamic nature under the moving trains which differs it from the case of standing trains. So the present study is allocated to establish a relation between the dynamic and static stiffness of ballasted tracks via field measurements. In this regard, two different sites of ballasted tracks with wooden and concrete sleepers were selected and the static and dynamic stiffness were measured based on Talbot - Wasiutynski method. In this matter, the selected tracks were loaded by two heavy and light car bodies for standing and moving conditions and consequently the deflection basins were evaluated in both sites. Knowing the deflection basins respect to light and heavy loading conditions, both of static and dynamic stiffness values were extracted. Finally two definite relations were obtained for ballasted tracks with wooded and concrete sleepers.

슬래브궤도의 방진효율성 평가기법 개발 (Development of Evaluation Method of Vibration-Reduction Efficiency in Slab Track)

  • 양신추;강윤석;김만철;이종득
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1999년도 추계학술대회 논문집
    • /
    • pp.463-470
    • /
    • 1999
  • In this paper, a numerical method for evaluating the efficiency of vibration reduction of substructure under slab track is developed for optimal design of floating slab track. The equation of motion for train and track interaction system is derived by applying compatibility condition at the contact points between wheels and rails. The train is modelled by 3-masses system and the track by continuous support beam system. Numerical analyses are carried out to investigate the effect of train speed, stiffness and damping of slab-pad, and track irregularity upon vibration reduction in substructure under the track.

  • PDF

운행선 궤도형식별 궤도열화에 미치는 매개변수 연구 (Parametric Study on Track Deterioration by Various Track Type of Serviced Line)

  • 최정열;박종윤;정지승
    • 문화기술의 융합
    • /
    • 제8권3호
    • /
    • pp.239-244
    • /
    • 2022
  • 본 연구는 현장조사 및 실내시험을 바탕으로 궤도형식별 열화에 영향을 미치는 핵심매개변수를 도출하였다. 기존 궤도 열화모델은 자갈궤도에 국한된 모델로서 콘크리트궤도의 열화평가는 연구된 것이 없는 실정이다. 본 연구에서는 운행선 궤도형식별 다양한 궤도구조의 특성이 반영된 열화요인을 도출하고자 궤도구성품의 성능수준 및 상태평가를 위한 실내시험을 수행하였다. 또한 궤도유지관리 이력데이터에 대한 분석을 통해 궤도열화 및 유지관리에 영향을 미치는 매개변수를 도출하였다. 현장조사, 궤도유지관리 이력데이터 분석 및 현장시료를 이용한 궤도구성품의 성능시험을 통해 궤도성능기반의 궤도열화 매개변수는 궤도침하 및 궤도지지강성에 직접적인 영향을 미칠 수 있는 도상자갈과 방진패드인 것으로 분석되었다.

On effects of rail fastener failure on vehicle/track interactions

  • Xu, Lei;Gao, Jianmin;Zhai, Wanming
    • Structural Engineering and Mechanics
    • /
    • 제63권5호
    • /
    • pp.659-667
    • /
    • 2017
  • Rail support failure is inevitably subjected to track geometric deformations. Due to the randomness and evolvements of track irregularities, it is naturally a hard work to grasp the trajectories of dynamic responses of railway systems. This work studies the influence of rail fastener failure on dynamic behaviours of wheel/rail interactions and the railway tracks by jointly considering the effects of track random irregularities. The failure of rail fastener is simulated by setting the stiffness and damping of rail fasteners to be zeroes in the compiled vehicle-track coupled model. While track random irregularities will be transformed from the PSD functions using a developed probabilistic method. The novelty of this work lays on providing a method to completely reveal the possible responses of railway systems under jointly excitation of track random irregularities and rail support failure. The numerical results show that rail fastener failure has a great influence on both the wheel/rail interactions and the track vibrations if the number of rail fastener failure is over three. Besides, the full views of time-dependent amplitudes and probabilities of dynamic indices can be clearly presented against different failing status.

Free vibrations of precast modular steel-concrete composite railway track slabs

  • Kimani, Stephen Kimindiri;Kaewunruen, Sakdirat
    • Steel and Composite Structures
    • /
    • 제24권1호
    • /
    • pp.113-128
    • /
    • 2017
  • This paper highlights a study undertaken on the free vibration of a precast steel-concrete composite slab panel for track support. The steel-concrete composite slab track is an evolvement from the slab track, a form of ballastless track which is becoming increasingly attractive to asset owners as they seek to reduce lifecycle costs and deal with increasing rail traffic speeds. The slender nature of the slab panel due to its reduced depth of construction makes it susceptible to vibration problems. The aim of the study is driven by the need to address the limited research available to date on the dynamic behaviour of steel-concrete composite slab panels for track support. Free vibration analysis of the track slab has been carried out using ABAQUS. Both eigenfrequencies and eigenmodes have been extracted using the Lanczos method. The fundamental natural frequencies of the slab panel have been identified together with corresponding mode shapes. To investigate the sensitivity of the natural frequencies and mode shapes, parametric studies have been established, considering concrete strength and mass and steel's modulus of elasticity. This study is the world first to observe crossover phenomena that result in the inversion of the natural orders without interaction. It also reveals that replacement of the steel with aluminium or carbon fibre sheeting can only marginally reduce the natural frequencies of the slab panel.

Damped frequencies of precast modular steel-concrete composite railway track slabs

  • Kaewunruen, Sakdirat;Kimani, Stephen Kimindiri
    • Steel and Composite Structures
    • /
    • 제25권4호
    • /
    • pp.427-442
    • /
    • 2017
  • This paper presents unprecedented damped oscillation behaviours of a precast steel-concrete composite slab panel for track support. The steel-concrete composite slab track is an innovative slab track, a form of ballastless track which is becoming increasingly attractive to asset owners as they seek to reduce lifecycle costs and deal with increasing rail traffic speeds. The slender nature of the slab panel due to its reduced depth of construction makes it susceptible to vibration problems. The aim of the study is driven by the need to address the limited research available to date on the dynamic behaviour of steel-concrete composite slab panels for track support. Free vibration analysis of the track slab has been carried out using ABAQUS. Both undamped and damped eigenfrequencies and eigenmodes have been extracted using the Lancsoz method. The fundamental natural frequencies of the slab panel have been identified together with corresponding mode shapes. To investigate the sensitivity of the natural frequencies and mode shapes, parametric studies have been established, considering concrete strength and mass and steel's modulus of elasticity. This study is the world first to observe crossover phenomena that result in the inversion of the natural orders without interaction. It also reveals that replacement of the steel with aluminium or carbon fibre sheeting can only marginally reduce the natural frequencies of the slab panel.

Modelling the dynamic response of railway track to wheel/rail impact loading

  • Cai, Z.;Raymond, G.P.
    • Structural Engineering and Mechanics
    • /
    • 제2권1호
    • /
    • pp.95-112
    • /
    • 1994
  • This paper describes the formulation and application of a dynamic model for a conventional rail track subjected to arbitary loading functions that simulate wheel/rail impact forces. The rail track is idealized as a periodic elastically coupled beam system resting on a Winkler foundation. Modal parameters of the track structure are first obtained from the natural vibration characteristics of the beam system, which is discretized into a periodic assembly of a specially-constructed track element and a single beam element characterized by their exact dynamic stiffness matrices. An equivalent frequency-dependent spring coefficient representing the resilient, flexural and inertial characteristics of the rail support components is introduced to reduce the degrees of freedom of the track element. The forced vibration equations of motion of the track subjected to a series of loading functions are then formulated by using beam bending theories and are reduced to second order ordinary differential equations through the use of mode summation with non-proportional modal damping. Numerical examples for the dynamic responses of a typical track are presented, and the solutions resulting from different rail/tie beam theories are compared.

궤도 진동기반의 침목플로팅궤도 침목방진패드 스프링강성 추정 기법 연구 (Estimation Method of Resilience Pads Spring Stiffness for Sleeper Floating Tracks based on Track Vibration)

  • 최정열;박상욱;정지승
    • 문화기술의 융합
    • /
    • 제9권6호
    • /
    • pp.1057-1063
    • /
    • 2023
  • 본 연구대상인 도시철도 침목플로팅궤도(STEDEF)는 구조물로 전달되는 진동을 저감시키기 위한 방진궤도이다. 현재 침목플로팅궤도의 침목방진패드 교체주기(정적 스프링강성 변화율, 25±2%)는 하중기반(궤도충격계수와 궤도지지강성)으로 설정되어 운영중인 실정이다. 그러나 대부분의 선행연구는 침목방진패드의 피로수명평가와 스프링강성 증가에 따른 궤도충격계수 및 궤도지지강성의 증가 등 하중기반의 구조적 안전성 측면의 연구가 진행되었다. 따라서 본 연구에서는 분석 구간별 도상 진동가속도를 측정하고 700만회 피로시험결과를 이용하여 구간별 침목방진패드 스프링강성을 산출하고자 한다. 구간별 산출한 침목방진패드 스프링강성을 해석제원으로 설정하여 도상 진동가속도를 해석적으로 도출하였다. 구간별 해석 도상 진동가속도가 현장측정 도상 진동가속도 범위 이내로 나타나 해석모델링의 적정성이 검증되었다. 도출된 스프링강성 변화에 따른 진동가속도 선도(g-k curve)를 이용하여 측정 도상 진동가속도로 침목방진패드 스프링강성을 추정하고자 한다. 따라서 측정 도상 진동가속도를 이용한 운행선로의 침목방진패드 스프링강성을 추정할 수 있는 기법을 제시하고자 한다.