• Title/Summary/Keyword: Track Structure

Search Result 562, Processing Time 0.03 seconds

Track Improvement Study Guide for Speed-up Conventional Railway (간선철도 속도향상을 위한 궤도개량 연구방향)

  • Kim, Hwan-Yung;Lee, Dong-Ho;Kim, Si-Chul;Gong, Byung-Gun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2456-2463
    • /
    • 2011
  • Conventional railways are less competitive than other land transportation means in term of speed, and thus users preference and transportation share for rail system are relatively lower than others. For example, most of the conventional lines except the Seoul~Busan corridor run at an average speed of 70 km/h or less, which imposes certain constraints on roles and functions as the trunk lines. In this regard, the speed of the conventional lines should be improved up to 200 km/h to gain competitiveness, promote balanced regional development and lead the era of low carbon green growth. As track system is one of the most important elements for the speed-up, it is critical to come up with optimum technical solutions. Improvement of ballast track structure with efficient track installation can provide structural stability for higher speed and ensure operational safety with lower maintenance efforts. Thus, this study focuses on consequences followed by the speed-up including increase of load imposed on the track and impacts on track components, and provide solutions for track maintenance by analyzing impact on the track structure by speed. Also, it compares ballast and concrete tracks under designing and construction and considers how to meet needs for passengers comfort and environmental requirements as a strategic approach.

  • PDF

Response Analysis of Ground Vibration for Cutting and Embankment Transition Zone Structure (절성토 접속구조별 지반진동 응답특성)

  • Lee, Il-Wha;Yun, Won-Min;Choi, Won-Il;Hwang, In-Hwan;Hwang, Sung-Wook
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3195-3200
    • /
    • 2011
  • The vibration resulting from railway operation is transmitted through the track and line structure, ground movements to adjacent buildings. As these vibration is growing, there is occurred exaggerated forces and displacements of the track and line structure and it is causing the differential settlement. It is difficult to clarify the dynamic response characteristics of trackbed because of various environmental conditions. However, track irregularity be affected by ununiformed bearing capacity and its dynamic response, study for dynamic response characteristics is required to investigate the cause of track irregularity and countermeasure. This study was intended to evaluate the numerical analysis which exam the response analysis characteristic of ground vibration by shape of cutting and embankment transition zone. The original method of analysis were have to examine variables such as directions, angles, drain conditions, linear conditions. However, In the analysis there were to consider the effect of moving loads according to directions of cutting and embankment transition zone.

  • PDF

Concrete Crack of Ballastless Track Structure and its Repair

  • Xie, Yongjiang;Li, Huajian;Feng, Zhongwei;Lee, Il-Wha
    • International Journal of Railway
    • /
    • v.2 no.1
    • /
    • pp.30-36
    • /
    • 2009
  • Crack and its damage of structure concrete in both FBS and TBS ballastless track are presented. The cause of concrete crack is analyzed. According to corresponding quantitative equation, effective technical measures to depression crack of concrete are put forward, at the same time the rationality of elastic ratio for HGT has been proved. At last, by the analysis of the characteristic of high-speed train, which are serving in the open air, bearing fatigue load, the short time for maintenance window and high speed of service, technical requirement for concrete repair material, repair technology and repair tools of ballastless track structure are presented.

  • PDF

Parametric Study on Geogrid-Reinforced Track Substructure

  • Oh, Jeongho
    • International Journal of Railway
    • /
    • v.6 no.2
    • /
    • pp.59-63
    • /
    • 2013
  • The purpose of this paper was to evaluate the effectiveness of geogrid for conventional ballasted track and asphalt concrete underlayment track using PLAXIS finite element program. Geogrid element was modeled at various locations that include subballast/subgrade, subballast/ballast interfaces, middle of the ballast, and one-third depth of the ballast. The results revealed that the effectiveness of geogrid reinforcement appeared to be larger for ballasted track structure compared to asphalt concrete underlayment track. Particularly, in case of installing geogrid at one-third depth of ballast layer in a conventional ballasted track, the most effectiveness of geogrid reinforcement was achieved. The influence of geogrid axial stiffness on track substructure response was not clear to conclude. Further validations using a discrete element method along with experimental investigation are considered as a future study. The effect of asphalt concrete layer modulus was evaluated. The results exhibited that higher layer modulus seems to be effective in controlling displacement and strain of track substructure. However it also yields slightly higher stresses within track substructure. It infers that further validations are required to come up with optimum asphalt concrete mixture design to meet economical and functional criteria.

Embedded Rail Track on the LRT(Tram) (레일 매립궤도의 특성과 노면철도에 적용 가능성에 관한 연구)

  • Lee Ki-Seung;Kim Sung-Chil;Beak Jin-Ki;Go Dong-Chun
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.394-399
    • /
    • 2005
  • Embedded rail track can be described as a track structure that is completely covered within pavement. Rail supported continually on a concrete slab or concrete plinth. There are many kinds of types such as non-resilient track and resilient track, super resilient embedded track (floating slab). Embedded rail track is generally the standard for light rail transit routes because this track has many advantages such as reducing noise, maintenance cost and weight of track. In this paper, decision of track profile is restricted by the optimum levels of the flangeway and the gap between the rail head and the pavement surface of depressing tread zone. By result of this study, embedded rail track can reduce corrosion of rail, internal stress and rail deflection.

  • PDF

Parametric Study on the Safety of CWR Track over High-Speed Railway Bridges (매개변수해석을 통한 고속전철교량상 장대레일궤도 안전성 검토)

  • 강재윤;김병석;김영진;박성용;조정래;최은석;진원종
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.1
    • /
    • pp.1-9
    • /
    • 2002
  • Where the track is continuously welded over the bridge, the longitudinal forces will be distributed interactively between the track and the sub-structure by the rail-bridge interaction mechanism. The ratio between the longitudinal forces transmitted in each elements depends on the magnitude of the ballast resistance and the stiffness of the sub-structures. In this paper, the main factors affect on the longitudinal rail force are discussed and the parametric study for the behavior of CWR(Continuous Welded Rail) track was executed. It is concluded that the horizontal ballast resistance and the stiffness of the bridge sub-structure are the significant parameters affecting the stability of the continuous welded rail track.

Evaluation of Stress Reduction of Continuous Welded Rail of Sliding Slab Track from Track-Bridge Interaction Analysis (궤도-교량 상호작용 해석에 의한 슬라이딩 슬래브 궤도의 장대레일 응력 저감 효과 분석)

  • Lee, Kyoung Chan;Jang, Seung Yup;Jung, Dong-Ki;Byun, Hyung-Kyoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.1179-1189
    • /
    • 2015
  • Continuous welded rail on bridge structure experiences typically a large amount of additional longitudinal axial forces due to longitudinal track-bridge interaction under temperature and traction/braking load effect. In order to reduce the additional axial forces, special type of fastener, such as ZLR and RLR or rail expansion joint should be applied. Sliding slab track system is known to reduce the effect of track-bridge interaction by the application of a sliding layer between slab track and bridge structure. This study presents track-bridge interaction analysis results of the sliding slab track and compares them with conventional fixed slab track on bridges. The result shows that the sliding slab track can significantly reduce the additional axil forces of the continuously welded rail, and the difference is more significant for long and continuous span bridge.

Development of evaluation method for the railroad track life cycle considering environmental effect factors (환경영향인자를 고려한 궤도수명산정 기법 개발)

  • Kong, Jung-Sik;Jeong, Min-Chul;Kim, Jung-Hoon;Lee, Won-Woo
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.167-172
    • /
    • 2011
  • Generally, the analysis of railroad wear data is most effective method for the efficient railway maintenance. The wear of railway track affects loss of rough ride, noise or vibration of train and traveling safety. Moreover as the track is worn away, this promotes destruction of structural mechanism of rail track which can bring about increasing of rail track maintenance cost drastically. For this reason, it is very important and interested research subject to design railway track structure and to analyse train movement mechanism based on systematic analysis of the reasons causing rail wear possible in real field. In this research, for the efficient maintenance, Life Cycle Performance of rail track and maintenance characteristics are computed considering some track components such as track type, contracting type, sleeper type and roadbed type. Time - Wear probabilistic distribution relationship as well as multiple regression analysis based on time, curvature and wear data are computed to predict the service life remainder of railway track and to be adapted to safety assessment.

  • PDF

Wheel &Track Hybrid Mobile Robot Platform and Mechanism for Optimal Navigation in Urban Terrain (도심지형 최적주행을 위한 휠.무한궤도 하이브리드형 모바일 로봇 플랫폼 및 메커니즘)

  • Kim, Yoon-Gu;Kim, Jin-Wook;Kwak, Jeong-Hwan;Hong, Dae-Han;Lee, Ki-Dong;An, Jin-Ung
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.3
    • /
    • pp.270-277
    • /
    • 2010
  • Various robot platforms have been designed and developed to perform given tasks in a hazardous environment for the purpose of surveillance, reconnaissance, search and rescue, and etc. We have considered a terrain adaptive hybrid robot platform which is equipped with rapid navigation on flat floors and good performance on overcoming stairs or obstacles. Since our special consideration is posed to its flexibility for real application, we devised a design of a transformable robot structure which consists of an ordinary wheeled structure to navigate fast on flat floor and a variable tracked structure to climb stairs effectively. Especially, track arms installed in front side, rear side, and mid side are used for navigation mode transition between flatland navigation and stairs climbing. The mode transition is determined and implemented by adaptive driving mode control of mobile robot. The wheel and track hybrid mobile platform apparatus applied off-road driving mechanism for various professional service robots is verified through experiments for navigation performance in real and test-bed environment.

Enhancement of Railway Graph for Representing Othogonal Railway Crossing in a Track Network (철도 네트워크에서 직교 교차선로 표현을 위한 선로그래프의 개선)

  • Cho, Dong-Young
    • The Journal of Korean Association of Computer Education
    • /
    • v.6 no.4
    • /
    • pp.61-69
    • /
    • 2003
  • RG(Railway Graph), which is a connected graph structure with the concepts of internal and external edges, is a data structure for representing railway assignments in a track network. In RG, it is possible to represent railway connectivities considering it's forward direction which is impossible in a digraph representation. But with RC, we can not still represent an othogonoal railway crossing in a track network. In this paper, we extend RG using the concept of dummy edge. Using ERG(Extended Railway Graph), we describe a method to consistently represent track network including othogonoal railway crossings, data structure for our ERG, and path allocation algorithm in ERG.

  • PDF