• Title/Summary/Keyword: Traceless

Search Result 13, Processing Time 0.017 seconds

FUNDAMENTAL TONE OF COMPLETE WEAKLY STABLE CONSTANT MEAN CURVATURE HYPERSURFACES IN HYPERBOLIC SPACE

  • Min, Sung-Hong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.369-378
    • /
    • 2021
  • In this paper, we give an upper bound for the fundamental tone of stable constant mean curvature hypersurfaces in hyperbolic space. Let M be an n-dimensional complete non-compact constant mean curvature hypersurface with finite L2-norm of the traceless second fundamental form. If M is weakly stable, then λ1(M) is bounded above by n2 + O(n2+s) for arbitrary s > 0.

THE STRUCTURE OF THE REGULAR LEVEL SETS

  • Hwang, Seung-Su
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.6
    • /
    • pp.1245-1252
    • /
    • 2011
  • Consider the $L^2$-adjoint $s_g^{'*}$ of the linearization of the scalar curvature $s_g$. If ker $s_g^{'*}{\neq}0$ on an n-dimensional compact manifold, it is well known that the scalar curvature $s_g$ is a non-negative constant. In this paper, we study the structure of the level set ${\varphi}^{-1}$(0) and find the behavior of Ricci tensor when ker $s_g^{'*}{\neq}0$ with $s_g$ > 0. Also for a nontrivial solution (g, f) of $z=s_g^{'*}(f)$ on an n-dimensional compact manifold, we analyze the structure of the regular level set $f^{-1}$(-1). These results give a good understanding of the given manifolds.

The 𝒲-curvature Tensor on Relativistic Space-times

  • Abu-Donia, Hassan;Shenawy, Sameh;Syied, Abdallah Abdelhameed
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.1
    • /
    • pp.185-195
    • /
    • 2020
  • This paper aims to study the 𝒲-curvature tensor on relativistic space-times. The energy-momentum tensor T of a space-time having a semi-symmetric 𝒲-curvature tensor is semi-symmetric, whereas the whereas the energy-momentum tensor T of a space-time having a divergence free 𝒲-curvature tensor is of Codazzi type. A space-time having a traceless 𝒲-curvature tensor is Einstein. A 𝒲-curvature flat space-time is Einstein. Perfect fluid space-times which admits 𝒲-curvature tensor are considered.