• Title/Summary/Keyword: Trace heavy metals

Search Result 157, Processing Time 0.029 seconds

Studies on the Production of Artificial Zeolite from Coal Fly Ash and Its Utilization in Agro-Environment

  • Lee, Deog-Bae;Henmi, Teruo;Lee, Kyung-Bo;Kim, Jae-Duk
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.5
    • /
    • pp.401-418
    • /
    • 2000
  • 1. Production of the artificial zeolite from coal ash Coal fly ash is mainly composed of several oxides including $SiO_2$ and $Al_2O_3$ derived from inorganic compounds remained after burning. As minor components, $Fe_2O_3$ and oxides of Mg, Ca, P, Ti (trace) are also contained in the ash. These components are presented as glass form resulting from fusion in the process of the combustion of coal. In other word, coal ash may refer to a kind of aluminosilicate glass that is known to easily change to zeolite-like materials by hydrothermal reaction. Lots of hot seawater is disposing near thermal power plants after cooling turbine generator periodically. Using seawater in the hydrothermal reaction caused to produce low price artificial zeolite by reduction of sodium hydroxide consumption, heating energy and water cost. As coal ash were reacted hydrothermally, peaks of quartz and mullite in the ash were weakened and disappeared, and new Na-Pl peaks were appeared strengthily. Si-O-Si bonding of the bituminous coal ash was changed to Si-O-Al (and $Fe^{3+}$) bonding by the reaction. Therefore the produced Na-Pl type zeolite had high CEC of 276.7 $cmol^+{\cdot}kg^{-1}$ and well developed molecular sieve structure with low concentration of heavy metals. 2. Utilization of the artificial zeolite in agro-environment The artificial zeolite(1g) could remove 123.5 mg of zinc, 164.7 mg copper, 184.4 mg cadmium and 350.6 mg lead in the synthetic wastewater. The removability is higher 2.8 times in zinc, 3.3 times in copper, 4.7 times in cadmium and 4.8 times in lead than natural zeolite and charcoal powder. When the heavy metals were treated at the ratio of 150 $kg{\cdot}ha^{-1}$ to the rice plant, various growth inhibition were observed; brownish discoloration and death of leaf sheath, growth inhibition in culm length, number of panicles and grains, grain ripening and rice yield. But these growth inhibition was greatly alleviated by the application of artificial zeolite, therefore, rice yield increased $1.1{\sim}3.2$ times according to the metal kind. In addition, the concentration of heavy metals in the brown rice also lowered by $27{\sim}75%$. Artificial Granular Zeolites (AGZ) was developed for the purification of wastewater. Canon exchange capacity was 126.8 $cmol^+{\cdot}kg^{-1}$. AGZ had Na-Pl peaks mainly with some minor $C_3S$ peaks in X-ray diffractogram. In addition, AGZs had various pore structure that may be adhere the suspended solid and offer microbiological niche to decompose organic pollutants. AGZ could remove ammonium, orthophosphate and heavy metals simultaneously. Mixing ratio of artificial zeolite in AGZs was related positively with removal efficiency of $NH_4\;^+$ and negatively with that of $PO_4\;^{3-}$. Root growth of rice seedling was inhibited severely in the mine wastewater because of strong acidity and high concentration of heavy metals. As AGZ(1 kg) stayed in the wastewater(100L) for 4days, water quality turned into safely for agricultural usage and rice seedlings grew normally.

  • PDF

Trace Element Analysis and Source Assessment of Household Dust in Daegu, Korea (대구지역 일반주택의 축적먼지 중 미량원소성분 분석과 오염원 평가)

  • Do, Hwa-Seok;Song, Hee-Bong;Jung, Yeoun-Wook;Yoon, Ho-Suk;Kwak, Jin-Hee;Han, Jeong-Uk;Kang, Hye-Jung;Phee, Young-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.1
    • /
    • pp.69-78
    • /
    • 2010
  • In order to investigate the degree of household dust contamination, 48 samples of household dust (24 from urban area and 24 from rural area) in Daegu city were collected in vacuum cleaner during January to February 2009. Samples were sieved below 100 ${\mu}m$, and 14 elements (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, V, Zn) were analyzed using ICP after acid extraction. Results obtained from the source assessment of trace elements using enrichment factor showed that Ca, Fe, K, Mg, Mn, Na, and V were influenced by natural sources such as weathered rock and resuspended soil, while Cd, Cr, Cu, Ni, Pb and Zn were influenced by anthropogenic sources such as fuel combustion and waste incineration. Concentrations were remarkably higher in components from natural sources than in components from urban anthropogenic sources. Household dust in urban area was more affected by anthropogenic sources compared with that of rural area. Pollution index of heavy metals revealed that urban area was 1.8 times more contaminated with heavy metal components than rural area. The correlation analysis among trace elements indicated that components were correlated with natural sources-natural sources (Al-Mg, Al-Mn, Fe-Mn) and natural sources-anthropogenic sources (Al-V, Fe-Cr, V-Mn) in both urban area and rural area. Trace element components of rural area were more correlated than those of urban area. Houses that use oil for heating fuel had relatively higher contents of heavy metals rather than those using gas or electricity for heating fuel. Houses with children also had higher contents of heavy metals. In addition, the age of houses was found to influence the heavy metal levels in household dusts, with older houses (>10years) having higher concentrations than newer houses (<10years) and houses located near the major road (<10 m) were found to have relatively higher heavy metal levels in household dust.

Neutralization of Acid Rock Drainage from the Dongrae Pyrophyllite Deposit: A Study on Behavior of Heavy Metals (동래 납석광산 산성 광석배수의 중화실험: 중금속의 거동 특성 규명)

  • 염승준;윤성택;김주환;박맹언
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.68-76
    • /
    • 2002
  • In this study, we have investigated the geochemical behavior and fate of heavy metals in acid rock drainage (ARD). The ARD was collected from the area of the former Dongrae pyrophyllite mine. The Dongrae Creek waters were strongly acidic (pH : 2.3~4.2) and contained high concentrations of $SO_4$, Al, Fe, Mn, Pb, Cu, Zn, and Cd, due to the influence of ARD generated from weathering of pyrite-rich pyrophyllite ores. However, the water quality gradually improved as the water flows downstream. In view of the change of mole fractions of dissolved Fe, Al and Mn, the generated ARD was initially both Fe- and AA-ich but progressively evolved to more Al-rich toward the confluence with the uncontaminated Suyoung River. As the AR3 (pH 2.3) mixed with the uncontaminated waters (pH 6.5), the pH increased up to 4.2, which caused precipitation of $SO_4$-rich Fe hydroxysulfate as a red-colored, massive ferricrete precipitate throughout the Dongrae Creek. Accompanying the precipitation of ferricrete, the Dongrae Creek water progressively changed to more Al-rich toward downstream sites. At the mouth of the Dongrae Creek, it (pH 3.4) mixed with the Suyoung River (pH 6.9), where pH increased to 5.7, causing precipitation of Al hydroxysulfate (white precipitates). Neutralization of the ARD-contaminated waters in the laboratory caused the successive formation of Fe precipitates at pH<3.5 and Al precipitates at higher pH (4~6). Manganese compounds were precipitated at pH>6. The removal of trace metals was dependent on the precipitation of these compounds, which acted as sorbents. The pHs for 50% sorption ($pH_{50}$) in Fe-rich and Al-rich waters were respectively 3.2 and 4.5 for Pb, 4.5 and 5.8 for Cu, 5.2 and 7.4 for Cd, and 5.8 and 7.0 for Zn. This indicates that the trace metals were sorbed preferentially with increasing pH in the general order of Pb, Cu, Cd, and Zn and that the sorption of trace metals in Al-rich water occurred at higher pH than those in Fe-rich water. The results of this study demonstrated that the partitioning of trace metals in ARD is not only a function of pH, but also depends on the chemical composition of the water.

The Contents of Heavy Metal in Fruits and Vegetables Collected from Jinju District (진주지방(晋州地方)의 원예작물중(園藝作物中) 중금속함량(重金屬含量))

  • Kim, Myung-Chan;Sung, Nack-Kie;Shim, Ki-Hwan;Lee, Min-Hyo;Lee, Jae-In
    • Korean Journal of Food Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.299-306
    • /
    • 1981
  • Contents of heavy metals in fruits and vegetables collected from Jinju district of Korea during June 1980 to March 1981 were determined. Statistical analysis of the data showed the maximum, minimum, mean and standard deviation for each variable. The ranges of their amounts in fruits and vegetables were lead, $trace{\sim}0.829\;ppm\;;mercury,\:ND{\sim}0.368\;ppm;cadmium,\;ND{\sim}0.264\;ppm;\;arsenic,\;trace{\sim}1.289\;ppm;\;copper,0.200{\sim}3.759\;ppm;\;zinc,\;0.327{\sim}21.663\;ppm;\; manganese,\;0.828{\sim}22.413\;ppm;\;iron,\;0.201{\sim}32.425 ppm,$ respectively and the content of chromium was in trace for 4 samples.

  • PDF

Temporal and Spatial Variation and Removal Efficiency of Heavy Metals in the Stream Water Affected by Leachate from the Jiknaegol Tailings Impoundment of the Yeonhwa II Mine (제2연화광산 직내골 광미장 침출수에 오염된 하천수계의 시.공간적 수질변화 및 중금속 제거효율)

  • Lee, Pyeong-Koo;Kang, Min-Ju;Choi, Sang-Hoon
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.1
    • /
    • pp.19-31
    • /
    • 2011
  • This study had been carried out to investigate spatial and temporal variations of the concentrations of trace metals for contaminated surface water in creek affected by leachate from the tailings impoundment of the Yeonhwa II mine for about 2 years. It was also to ascertain the metal removal efficiency for potentially deleterious metals by the artificial and natural attenuation processes such as retention ponds and hydrologic mixing of uncontaminated tributaries. The concentrations of As, Pb, Cd, and Cu for leachate in the rainy season were not detected. On the other hand, the concentrations of Zn, Fe, Mn, Al, and $SO_4^{2-}$ in the rainy season for leachate were 2-66 times higher than those in the dry season, due to the oxidation of the sulfide minerals and the dissolution of the secondary minerals. The concentrations of Zn and Cd for leachate and surface water of the upper creek in the rainy season exceeded the criteria of River Water Quality and Drinking Water Quality but in the dry season, those of analyzed all the metals (As, Pb, Cd, Cu, Zn, Cd, Fe, Mn, and Al) for surface water sampled at the study area were below the criteria of River Water Quality and Drinking Water Quality. In regard of the attenuation efficiency for the concentrations of metals, Fe, Mn, Al, Zn, Cd, As, and Cu were removed highly at retention ponds, while the removal efficiency for major cations and sulfate ($SO_4^{2-}$) were related to mixing of the uncontaminated tributaries. Therefore, the major attenuation processes of the metal and sulfate contents in creek affected by leachate from a tailing dump were precipitation (accompanied by metal co-precipitation and sorption), water dilution, and neutralization.

Assessment of natural radionuclides and heavy metals contamination to the environment: Case study of Malaysian unregulated tin-tailing processing industry

  • Rahmat, Muhammad Abdullah;Ismail, Aznan Fazli;Rodzi, Nursyamimi Diyana;Aziman, Eli Syafiqah;Idris, Wan Mohd Razi;Lihan, Tukimat
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2230-2243
    • /
    • 2022
  • The tin tailing processing industry in Malaysia has operated with minimal regard and awareness for material management and working environment safety, impacting the environment and workers in aspects of radiation and heavy metal exposure. RIA was conducted where environmental samples were analyzed, revealing concentrations of 226Ra, 232Th and 40K between the range of 0.1-10.0, 0.0-25.7, and 0.1-5.8 Bq/g respectively, resulting in the AED exceeding UNCEAR recommended value and regulation limit enforced by AELB (1 mSv/y). Raeq calculated indicates that samples collected pose a significant threat to human health from gamma-ray exposure. Assessment of heavy metal content via pollution indices of soil and sediment showed significant contamination and enrichment from processing activities conducted. As and Fe were two of the highest metals exposed both via soil ingestion with an average of 4.6 × 10-3 mg/kg-day and 1.4 × 10-4 mg/kg-day, and dermal contact with an average of 5.6 × 10-4 mg/kg-day and 6.0 × 10-4. mg/kg-day respectively. Exposure via accidental ingestion of soil and sediment could potentially cause adverse non-carcinogenic and carcinogenic health effect towards workers in the industry. Correlation analysis indicates the presence of a relationship between the concentration of NORM and trace elements.

A Biogeochemical Study on the Heavy Metal Leaching from Coal Fly Ash Disposed by Dangjin Fire Plant in the Coastal Environment (당진화력발전소의 석탄회 연안매립과 중금속 원소의 용출에 대한 생지화학적 연구)

  • Cho, Kyu-Seong;Roh, Yul;Chung, Duk-Ho
    • Journal of the Korean earth science society
    • /
    • v.28 no.1
    • /
    • pp.112-122
    • /
    • 2007
  • It is known that coal-derived fly ashes have the unique chemical composition and mineralogical characteristics. Since iron oxides in coal fly ash are enriched with heavy metals, the subsurface media including soils, underground water, and sea water are highly likely contaminated with heavy metals when the heavy metals are leached from fly ashes by water-fly ash interactions. The purpose of this study was to investigate how indigenous bacteria affect heavy metal leaching and mineralogy in fly ash slurry during the fly ash-seawater interactions in the ash pond located in Dangjin seashore, Korea. The average pH of ash pond seawater was 8.97 in nature. Geochemical data showed that microbial activity sharply increased after the 7th day of the 60-day course batch experiments. Compared with other samples including autoclaved and natural samples, ${SO_4}^{2-}$ was likely to decrease considerably in the fly ash slurry samples when glucose was added to stimulate the microbial activity. Geochemical data including Eh/pH, alkalinity, and major and trace elements showed that the bacteria not only immobilize metals from the ash pond by facilitating the chemical reaction with Mn, Fe, and Zn but may also be able to play an important role in sequestration of carbon dioxide by carbonate mineral precipitation.

A Survey on the Heavy Metal Concentration of Soil Samples around Onsan Industrial Complex (온산공단(溫山工團)주변토양의 중금속(重金屬) 농도조사)

  • Lee, Su-Rae;Song, Ki-Joon
    • Korean Journal of Environmental Agriculture
    • /
    • v.4 no.2
    • /
    • pp.88-94
    • /
    • 1985
  • In order to investigate the pollution potential of soils after the construction of Onsan Industrial Complex(non-ferrous metal refineries), concentrations of hazardous heavy metals were analyzed for soil samples collected from paddy, upland, orchard and forest soils around the Complex during the period of March 1978 to May 1979. The results are summarized as follows. 1) The concentrations of heavy metals (air-dry basis) for cultivated soil samples from 46 sites were obtained in the range of trace-9.3 ppm As, trace-0.6 ppm Cd, 4${\sim}$22 ppm Cu, trace-0.37 ppm Hg, 6${\sim}$43 ppm Pb and 27${\sim}$93 ppm Zn, which were regarded as non-polluted when compared with the whole Korea data for non-polluted paddy soils. 2) When the heavy metal concentrations were compared with respect to paddy, upland and orchard soils, no significant difference was observed in As, Cd, Cu and Zn whereas significant difference was observed in Hg and Pb. When they were compared with respect to region surrounding the Complex, no significant difference was observed in As, Cd, Hg whereas significant difference was observed in Cu and Pb. 3) Soil samples from several sites near Korea Zinc Refinery were contaminated with Cd, Pb and Zn, due to the accidental emission during its testing operation. Any further contamination was not observed after regular operation of the Refinery.

  • PDF

Distribution of Organic Matter and Trace Metals in Surface Sediments and Ecological Risk Assessment in the Tongyeong Coast (통영연안 표층퇴적물에서의 유기물과 미량금속 분포 특성 및 생태위해성 평가)

  • YANG, WON HO;LEE, HYO JIN;KIM, GI BEUM
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.21 no.4
    • /
    • pp.125-133
    • /
    • 2016
  • We investigated the distribution of organic matter and trace metals in surface sediment from Tonyeong coast. To determine the status of trace metal pollution, we also conducted an ecological risk assessment. Relatively high concentration of TN (total nitrogen), TOC (total organic carbon), and AVS (acid volatile sulfide) was found in surface sediment located in the narrow channel (site 35-38). Spatial distribution of Cd, Cr, Ni, Co, Hg, and Zn in surface sediment was similar and high Cu concentrations were found in narrow channel. The assessment of heavy metal pollution was derived using the Enrichment factors (EF). The enrichment factor indicated that Cd was no enrichment (EF<1), Pb, Cr, Ni, Co, Zn, and Hg were minor enrichment (1

Studies on the Distribution of Heavy Metal Concentrations in Ambient Suspended Particulate Matters Using the X-ray Fluorescence Spectroscopy (X-선 형광분광법을 이용한 대기부유분진중 중금속의 농도분포에 관한 연구)

  • 이태정;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.8 no.1
    • /
    • pp.20-28
    • /
    • 1992
  • The x-ray fluorescence(XRF) is one of the most convenient and widely used techniques for analyzing trace elements in ambient particulate matters. The objects of the study were to estimate the optimum exposure time using the XRF, to investigate the distributions of heavy metal levels in particulate matters, and finally to study seasonal variation for the concentrations of total suspended particulate matters(TSP) and size fractionated particulate matters. The suspended particulate matters had been collected by a cascade impactor having 9 size fragnated stages for 3 years(Dec. 1988 to Nov. 1991) in Kyung Hee University-Suwon Campus. The particulate matters were then collected on each stage by membrane filters. The weight concentrations were determined by the XRF system. Thus, seasonal variations and relationship between concentration and particle size could be investigated. Resulting distribution was bimodal with the coarse and the fine particle groups minimum occurring around 2.1 to 3.3 $\mu$m as an aerodynamic diameter. To determine optimum exposure time of the XRF for various trace inorganic elements, membrane filters and the NIST standard filters were extensively studied. Using a statistical technique, optimum exposure time was estimated for each trace element and overall elements. The time was then determined as 20 seconds for the XRF system. The concentration of TSP was 123.9$\mum/m^3$ on an arithmatic average. The levels of each inorganic metal were Si 2420.0ng/$m^3$, Fe 977.1ng/$m^3$, and so on. The Pb. Zn, and Cu abounded in the fine mode group, while Ca, Fe, Si, Al, and K in the coarse group. Marked seasonal variation of TSP and metal concentrations was observed. The concentration of heavy metals in the fine mode was highest in winter : on the other hand, that in the coarse mode was highest in spring.

  • PDF