• Title/Summary/Keyword: Toxic zinc

Search Result 98, Processing Time 0.021 seconds

Antioxidative and Whitening Effects of Rubus parvifolius L. Extract on Dermal Cytotoxicity of ZnSO4, Mordant (매염제인 ZnSO4의 피부독성에 대한 멍석딸기 추출물의 항산화 및 미백효과)

  • Sohn, Young-Woo;Yoo, Sun-Mi
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.5
    • /
    • pp.199-205
    • /
    • 2021
  • This study was done to evaluate the dermatoxicity of zinc sulfate (ZnSO4) and the protective effect of Rubus parvifolius L. (RP) extract on cytotoxicity of ZnSO4, mordant in cultured SK-MEL-3 cells. For this study, it was done an antioxidative effect as DPPH-radical scavenging ability as well as the diminutive ability of total melanin with cell viability. ZnSO4 significantly decreased cell viability in dose-dependently, and it was mid-toxic. The ascorbic acid significantly increased cell viability damaged by ZnSO4-induced cytotoxicity. In the protective effect of RP extract on ZnSO4-induced cytotoxicity, RP extract significantly increased cell viability compared with ZnSO4-treated group, and also it showed both the DPPH-radical scavenging ability and the decrease of total amount of melanin. From these findings, the cytotoxicity of ZnSO4 is correlated with oxidative stress, and also RP extract effectively protected ZnSO4-induced cytotoxicity via antioxidative effect such as DPPH-radical scavenging ability with the whitening effect by the decrement of total amount of melanin. Conclusively, the natural ingredients like RP extract may be a useful agent for the improvement of antioxidative and whitening effects

Toxicity Assessment of Antifouling Agent using the Survival and Population Growth Rate of Marine Rotifer, Brachionus plicatilis (해산로티퍼(Brachionus plicatilis)의 생존 및 개체군 성장률을 이용한 신방오도료(Zinc undecylenate)의 독성평가)

  • Hwang, Un-Ki;Choi, Hoon;Park, Yun-Ho;Park, Na-Young;Jang, Soo-Jung;Lee, Seung Min;Choi, Yun-Seok;Yang, Joon-Yong;Lee, Ju-Wook
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.3
    • /
    • pp.392-399
    • /
    • 2018
  • Toxicity assessment of antifouling agent, zinc undecylenate (ZU) has been investigated using the rate of survival and population growth in marine rotifer, Brachionus plicatilis. The survival rate of Brachionus plicatilis was determined after 24 h of exposure to ZU and was not affected up to the maximum level of $100.0mg\;L^{-1}$ of ZU. The population growth rate (r) was determined after 72 h of exposure to ZU. It was observed that r in the controls (absence ZU) was greater than 0.5 but exhibited a sudden decrease with an increase in the concentration of ZU. ZU reduced r in a dose-dependent manner and a significant reduction occurred at a concentration greater than $12.5mg\;L^{-1}$. The 50% effective concentration ($EC_{50}$) value of r during ZU exposure was $26.4mg\;L^{-1}$, No-observed-effect-concentration (NOEC) was $6.3mg\;L^{-1}$ and Lowest-observed-effect-concentration (LOEC) was $12.5mg\;L^{-1}$, respectively. Based on the results, it is apparent that ZU concentration greater than $12.5mg\;L^{-1}$ exhibited a toxic effect on the r of zooplankton, B. plicatilis in natural ecosystems.

Heavy Metal Contamination in Surface Water Used for Irrigation: Functional Assessment of the Turag River in Bangladesh

  • Arefin, M. Taufique;Rahman, M. Mokhlesur;Wahid-U-Zzaman, M.;Kim, Jang-Eok
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.1
    • /
    • pp.83-90
    • /
    • 2016
  • The aim of the present study was to evaluate the degree of metal contamination of the Turag River water and its suitability for irrigation. Twenty water samples were analyzed for physicochemical parameters and metals viz., calcium, magnesium, potassium (K), sodium, copper (Cu), zinc (Zn), iron (Fe), manganese (Mn), lead (Pb), cadmium (Cd), chromium (Cr), and nickel (Ni). All water samples were slightly alkaline to alkaline. Regarding electrical conductivity (EC), all samples were suitable for crop in soils with moderate permeability and leaching. Water samples were medium salinity and low alkalinity hazard classes. In terms of total dissolved solids (TDS), all samples were classified as freshwater. As per sodium adsorption ratio (SAR) and soluble sodium percentage (SSP), all samples were classified as excellent. No residual sodium carbonate (RSC) was detected in any of the samples, indicating suitability for irrigation; and all samples were considered very hard. Cr and Mn contents in all samples were above FAO guideline values and, therefore, these metals were considered toxic. Zn, Cu, Pb, Cd, and Ni concentrations were below acceptable limit for irrigation and do not pose a threat to soil environment. Significant relationships were found between EC and TDS, SAR and SSP, SAR and RSC, and SSP and RSC. The combinations of ions such as K-Zn, K-Fe, K-Cu, K-Mn, K-Pb, Zn-Fe, Zn-Cu, Zn-Mn, Fe-Mn, Cu-Mn, Cu-Pb and Mn-Pb exhibited significant correlation. This study revealed that Turag River water samples are contaminated with Cr and Mn. This fact should not be ignored because water contamination by metals may pose a threat to human health through food chain.

Hazardous Air Pollutants Emission Characteristics from Cement Kilns Co-burning Wastes

  • Pudasainee, Deepak;Kim, Jeong-Hun;Lee, Sang-Hyeob;Cho, Sung-Jin;Song, Geum-Ju;Seo, Yong-Chil
    • Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.212-219
    • /
    • 2009
  • Emission characteristics of air pollutants from three commercially operating cement kilns co-burning waste were investigated. The major heavy metals emitted were mercury (Hg), zinc (Zn), nickel (Ni), chromium (Cr), lead (Pb), cadmium (Cd), and arsenic (As) Removal efficiency of the bag filter was above 98.5% for heavy metals (except Hg), and above 60% for Hg. Higher fractions of heavy metals entering the bag filter were speciated to cement kiln dust. On average, 3.3% of the -heavy metals of medium and low toxicity (Pb, Ni, and Cr) entering the bag filter were released into the atmosphere. Among highly toxic heavy metals, 0.14% of Cd, 0.01% of As, and 40% of Hg entering the bag filter were released into the atmosphere. In passing through the bag filter, the proportion of oxidized Hg in all cases increased. Emission variations of hazardous air pollutants in cement kilns tested were related to raw materials, fuel, waste feed and operating conditions. Volatile organic compounds detected in gas emissions were toluene, acrylonitrile benzene, styrene, 1,3-butadiene, and methylene chloride. Although hazardous air pollutants in emissions from cement kilns co-burning waste were within the existing emission limit, efforts are required to minimize their levels.

Improved Luminescent Characterization and Synthesis of InP/ZnS Quantum Dot with High-Stability Precursor (고 안정성 전구체를 사용한 InP/ZnS 반도체 나노입자 합성 및 발광 특성 향상)

  • Lee, Eun-Jin;Moon, Jong-Woo;Kim, Yang-Do;Shin, Pyung-Woo;Kim, Young-Kuk
    • Journal of Powder Materials
    • /
    • v.22 no.6
    • /
    • pp.385-390
    • /
    • 2015
  • We report a synthesis of non-toxic InP nanocrystals using non-pyrolytic precursors instead of pyrolytic and unstable tris(trimethylsilyl)phosphine, a popular precursor for synthesis of InP nanocrystals. In this study, InP nanocrystals are successfully synthesized using hexaethyl phosphorous triamide (HPT) and the synthesized InP nanocrystals showed a broad and weak photoluminescence (PL) spectrum. As synthesized InP nanocrystals are subjected to further surface modification process to enhance their stability and photoluminescence. Surface modification of InP nanocrystals is done at $230^{\circ}C$ using 1-dodecanethiol, zinc acetate and fatty acid as sources of ZnS shell. After surface modification, the synthesized InP/ZnS nanocrystals show intense PL spectra centered at the emission wavelength 612 nm through 633 nm. The synthesized InP/ZnS core/shell structure is confirmed with X-ray diffraction (XRD) and Inductively Coupled Plasma - Atomic Emission Spectrometer (ICP-AES). After surface modification, InP/ZnS nanocrystals having narrow particle size distribution are observed by Field Emission Transmission Electron Microscope (FE-TEM). In contrast to uncapped InP nanocrystals, InP/ZnS nanocrystals treated with a newly developed surface modified procedure show highly enhanced PL spectra with quantum yield of 47%.

Degradation of Pesticides in Wastewater Using Plasma Process Coupled with Photocatalyst (광촉매를 병합한 플라즈마 공정을 이용한 폐수에 함유된 살충제 분해)

  • Jang, Doo Il;Kim, Kil-Seong;Hyun, Young Jin
    • Applied Chemistry for Engineering
    • /
    • v.24 no.1
    • /
    • pp.87-92
    • /
    • 2013
  • Nonthermal plasma hybridized with photocatalysts is proven to be an effective tool to degrade toxic organics in wastewater. In this study, a specially designed dielectric barrier discharge (DBD) plasma system combined with photocatalysts was applied to decompose pestiticides such as dichlorovos, carbofuran and methidathon, which are frequently used in the golf courses and the orange plantations. The degradations of the pesticides in single and coupled systems were evaluated. The single system was used with ozone plasma which consisted of electrons, radicals, ions produced by oxygen gas and air, with and without ultra-violet (UV) irradiation, respectively. The coupled systems utilized the air-derived ozone plasma combined with zinc oxide, titanium dioxide and graphite oxide photocatalyst activated by UV. The graphite oxide was synthesized by a modified Hummer's method and characterized using FTIR spectrometer. It was elucidated that the plasma reaction with graphite oxide (0.01 g/L) brought about almost 100% of degradation degrees for dichlorovos and carbofuran in 60 min, as compared with the performances showed by no catalyst condition. The photocatalyst-hybridized plasma in the presence of UV irradiation was proven to be an effective alternative for degrading pesticides.

Biocompatibility and Surface Characteristics of PEO-treated Ti-40Ta-xZr Alloys for Dental Implant Materials

  • Yu, Ji-Min;Cho, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.23-23
    • /
    • 2018
  • In this study, new titanium alloys were prepared by adding elements such as tantalum (Ta), zirconium (Zr) and the like to complement the biological, chemical and mechanical properties of titanium alloys. The Ti-40Ta-xZr ternary alloy was formed on the basis of Ti-40Ta alloy with the contents of Zr in the contents of 0, 3, 7 and 15 wt. %. Plasma electrolytic oxidation (PEO), which combines high-voltage sparks and electrochemical oxidation, is a novel method to form ceramic coatings on light metals such as Ti and its alloys. These oxide film produced by the electrochemical surface treatment is a thick and uniform porous form. It is also composed of hydroxyapatite and calcium phosphate-based phases, so it has the characteristics of bone inorganic, non-toxic and very high bioactivity and biocompatibility. Ti-40Ta-xZr alloys were homogenized in an Ar atmosphere at $1050^{\circ}C$ for 1 hour and then quenched in ice water. The electrochemical oxide film was applied by using a power supply of 280 V for 3 minutes in 0.15 M calcium acetate monohydrate ($Ca(CH_3COO)_2{\cdot}H_2O$) and 0.02 M calcium glycerophosphate ($C_3H_7CaO_6P$) electrolyte. A small amount of 0.0075M zinc acetate and magnesium acetate were added to the electrolyte to enhance the bioactivity. The mechanical properties of the coated surface of Ti-40Ta-xZr alloys were evaluated by Vickers hardness, roughness test, and elastic modulus using nano-indentation, and the surface wettability was evaluated by measuring the contact angle of the coated surface. In addition, cell activation and differentiation were examined by cell culture of HEK 293 (Human embryonic kidney 293) cell proliferation. Surface properties of the alloys were analyzed by scanning electron microscopy(FE-SEM), EDS, and X-ray diffraction analysis (XRD).

  • PDF

Determination of Aflatoxin M1 and Heavy Metals in Infant Formula Milk Brands Available in Pakistani Markets

  • Akhtar, Saeed;Shahzad, Muhammad Arif;Yoo, Sang-Ho;Ismail, Amir;Hameed, Aneela;Ismail, Tariq;Riaz, Muhammad
    • Food Science of Animal Resources
    • /
    • v.37 no.1
    • /
    • pp.79-86
    • /
    • 2017
  • Aflatoxin $M_1$ ($AFM_1$) after its bioconversion from aflatoxin $B_1$ in animal liver becomes the part of milk while heavy metals get entry into milk and milk products during handling in the supply chain. Aflatoxin $M_1$ and heavy metals being toxic compounds are needed to be monitored continuously to avoid any ailments among consumers of foods contaminated with such toxicants. Thirteen commercially available infant formula milk (IFM) brands available in Pakistani markets were analyzed for the quantitative determination of $AFM_1$ and heavy metals through ELISA and atomic absorption spectrophotometer, respectively. $AFM_1$ was found positive in 53.84% samples while 30.76% samples were found exceeding the maximum EU limit i.e. $0.025 {\mu}g/kg$ for $AFM_1$ in IFM. Heavy metals lead (Pb) and cadmium (Cd) were found below the detection limits in any of the sample, whereas the concentrations of iron (Fe), zinc (Zn) and nickel (Ni) ranged between 45.40-97.10, 29.72-113.50 and <$0.001-50.90 {\mu}g/kg$, respectively. The concentration of Fe in all the tested brands was found in normal ranges while the concentrations of Zn and Ni were found exceeding the standard norms. Elevated levels of $AFM_1$, Zn and Ni in some of the tested IFM brands indicated that a diet completely based on these IFM brands might pose sever health implications in the most vulnerable community i.e., infants.

Cytotoxicity of Ultra-pure TiO2 and ZnO Nanoparticles Generated by Laser Ablation

  • Jeong, Minju;Park, Jeong Min;Lee, Eun Jeong;Cho, Yea Seul;Lee, Chunghyun;Kim, Jeong Moo;Hah, Sang Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3301-3306
    • /
    • 2013
  • This paper aims to address the cellular toxicity of ultra-pure titanium dioxide ($TiO_2$) and zinc oxide (ZnO) nanoparticles (NPs) frequently employed in sunscreens as inorganic physical sun blockers to provide protection against adverse effects of ultraviolet (UV) radiation including UVB (290-320 nm) and UVA (320-400 nm). In consideration that the production and the use of inorganic NPs have aroused many concerns and controversies regarding their safety and toxicity and that microsized $TiO_2$ and ZnO have been increasingly replaced by $TiO_2$ and ZnO NPs (< 100 nm), it is very important to directly investigate a main problem related to the intrinsic/inherent toxicity of these NPs and/or their incompatibility with biological objects. In the present study, we took advantage of the laser-assisted method called laser ablation for generation of $TiO_2$ and ZnO NPs. NPs were prepared through a physical process of irradiating solid targets in liquid phase, enabling verification of the toxicity of ultra-pure NPs with nascent surfaces free from any contamination. Our results show that $TiO_2$ NPs are essentially non-poisonous and ZnO NPs are more toxic than $TiO_2$ NPs based on the cell viability assays.

Toxic Effects and Distribution of Mercury in Barley Seedlings (보리 유식물에 처리한 수은의 분포 및 독성 연구)

  • 이춘환;장호식
    • Journal of Environmental Science International
    • /
    • v.1 no.1
    • /
    • pp.13-21
    • /
    • 1992
  • The inhibitory effects of mercury ions on the growth of barley seedlings were studied and the distribution of metal elements in the organs of treated plants was investigated by using synchrotron radiation induced X-ray emission (SRIXE). Although the treatment of mercury ions caused growth inhibition, the mercury-specific increase in variable fluorescence and the abolishment of energy-dependent quenching in broken barley chloroplasts as shown by Moon et at. (1992) were not observed in the leaves of growth-inhibited seedlings. Instead the treatment of mercury decreased Fmax and Fo values. However, Fmax/Fo ratio and photochemical and nonphotochemical quenching coefficients were not affected significantly. By SRIXE analysis of $10\mu\textrm{m}$ mercury chloride treated seedlings, accumulation of mercury in roots was observed after 1 hour of treatment and similar concentration was sustained for 48 hours. Relative contents of mercury was high in roots and underground nodes where seeds were attachedl but was very low in leaves. Iron and zinc were also distributed mainly in the lower parts of the seedlings. However after 72 hours of treatment the contents of these metals in roots decreased and their distribution became more uniform, which may lead to death of the plants. These results suggest that the observed inhibitory effects on barley seedlings upto 48 hours after the treatment is not due to direct damages in the photosynthetic apparatus, but due to its accumulation in roots and the consequent retardation of the growth of barley seedlings. The decrease in Fmax and Fo is probably due to the decrease in chlorophyll and protein contents caused by the retardation of growth. The observed slow expansion of primary leaves could be also explained by the retardation of growth, but the fluorescence induction pattern from the leaves did not show characteristic symptoms of leaves under water stress.

  • PDF