Degradation of Pesticides in Wastewater Using Plasma Process Coupled with Photocatalyst

광촉매를 병합한 플라즈마 공정을 이용한 폐수에 함유된 살충제 분해

  • Jang, Doo Il (Department of Chemical & Biological Engineering, Jeju National University) ;
  • Kim, Kil-Seong (Jeju Provincial Research Institute of Health and Environment) ;
  • Hyun, Young Jin (Department of Chemical & Biological Engineering, Jeju National University)
  • 장두일 (제주대학교 생명화학공학과) ;
  • 김길성 (제주특별자치도보건환경연구원) ;
  • 현영진 (제주대학교 생명화학공학과)
  • Published : 2013.02.10

Abstract

Nonthermal plasma hybridized with photocatalysts is proven to be an effective tool to degrade toxic organics in wastewater. In this study, a specially designed dielectric barrier discharge (DBD) plasma system combined with photocatalysts was applied to decompose pestiticides such as dichlorovos, carbofuran and methidathon, which are frequently used in the golf courses and the orange plantations. The degradations of the pesticides in single and coupled systems were evaluated. The single system was used with ozone plasma which consisted of electrons, radicals, ions produced by oxygen gas and air, with and without ultra-violet (UV) irradiation, respectively. The coupled systems utilized the air-derived ozone plasma combined with zinc oxide, titanium dioxide and graphite oxide photocatalyst activated by UV. The graphite oxide was synthesized by a modified Hummer's method and characterized using FTIR spectrometer. It was elucidated that the plasma reaction with graphite oxide (0.01 g/L) brought about almost 100% of degradation degrees for dichlorovos and carbofuran in 60 min, as compared with the performances showed by no catalyst condition. The photocatalyst-hybridized plasma in the presence of UV irradiation was proven to be an effective alternative for degrading pesticides.

광촉매 혼성 저온 플라즈마는 폐수에 함유된 유기물을 분해시키는 효과적인 기술이다. 본 연구에서는 광촉매가 결합된 특별히 설계된 유전체 방전 시스템을 골프장이나 감귤농가에서 흔히 살포되는 디크로보스, 카보퓨란 및 메치다치온 살충제의 분해에 적용하였다. 단독 및 병합 시스템에서 살충제의 분해를 평가하였다. 단독 시스템은 UV의 차폐 유무 및 산소기체와 공기에 의한 오존(각종 반응 활성종들 포함) 플라즈마를 이용하였다. 혼성 시스템은 UV로 활성화된 산화아연, 이산화티타늄과 그래파이트 옥사이드와 결합하여 공기에 의한 플라즈마 반응에 적용하였다. 그래파이트 옥사이드는 모사 허머스 법으로 제조하여 FT-IR 분광기로 성능을 측정하였다. 반응시간 60 min에서 UV를 차폐하고 공기를 이용한 플라즈마 반응에 의한 분해성능과 비교하였으며, UV로 활성화된 그래파이트 옥사이드(0.01 g/L)와 결합된 플라즈마 반응은 디크로보스와 카보퓨란의 각각 100% 분해도를 보였다. UV를 활용한 광촉매 혼성 플라즈마는 살충제를 분해시키는 효과적인 대안으로 입증되었다.

Keywords

References

  1. C. Lu, D. B. Barr, and M. A. Person, Health Perspect, 116, 537 (2008). https://doi.org/10.1289/ehp.10912
  2. M. Naddaf, S. Saloum, and B. Alkhaled, Vacuum, 85, 421 (2010). https://doi.org/10.1016/j.vacuum.2010.08.004
  3. S. E. Duirk, L. M. Desetto, G. M. Davis, C. Lindell, and C. T. Cornelison, Water Res., 44, 761 (2010). https://doi.org/10.1016/j.watres.2009.10.012
  4. J. Lee, J. K. Lee, S. Uhm, and H. J. Lee, Appl. Chem. Eng., 22, 235 (2011).
  5. Z. W. Min, S.-M. Hong, C.-K. Mok, and G.-J. Im, J. K. Soc. Pesticide Sci., 16, 11 (2012). https://doi.org/10.7585/kjps.2012.16.1.011
  6. S. Ahmed, M. G. Rasul, R. Brown, and M. A. Hashi, J. Environ. Manage., 92, 311 (2011). https://doi.org/10.1016/j.jenvman.2010.08.028
  7. D. I. Jang, T. H. Lim, S. B. Lee, Y. S. Mok, and H. Park, Appl. Chem. Eng., 23, 608 (2012).
  8. H.-B. Cho, M.-H. Suh, and Y.-H. Park, Appl. Chem. Eng., 20, 28 (2009).
  9. Y. Bai, J. Chen, H. Mu, C. Zhang, and B. Li, J. Agric. Food Chem., 57, 6238 (2009). https://doi.org/10.1021/jf900995d
  10. A. V. Lozhechnik, A. L. Mosse, V. V. Savichin, D. S. Skomor okhov, and I. V. Khvedchin, J. Eng. Phys. Thermophys., 84, 1114 (2011). https://doi.org/10.1007/s10891-011-0574-9
  11. T. Zhu, J. Li, Y. Jin, Y. Liang, and G. Ma, Int. J. Environ. Sci. Tech., 5, 375 (2008). https://doi.org/10.1007/BF03326032
  12. W. Cho, Y. C. Kim, and S. S. Kim, J. Ind. Eng. Chem., 16, 20 (2010). https://doi.org/10.1016/j.jiec.2010.01.027
  13. T.-F. Yeh, J.-M. Syu, C. Cheng, T.-H. Chang, and H. Tang, Adv. Funct. Mater., 20, 2255 (2010). https://doi.org/10.1002/adfm.201000274
  14. W.-C. Oh, M.-L. Chen, K. Zhang, and F.-J. Zhang, J. Korean Phys. Soc., 56, 1097 (2010). https://doi.org/10.3938/jkps.56.1097
  15. X. L. Hao, M. H. Zhou, and L. C. Lei, J. Photochem. Photobiol. A, 136, 163 (2006).
  16. K. H. Wang, Y.-H. Hscieh, and M.-Y. Chou, Appl. Catal. B, 21, 1 (1999). https://doi.org/10.1016/S0926-3373(98)00116-7
  17. K. Krishnamoorthy, R. Mohen, and S.-J. Kim, Appl. Phys. Lett., 98, 244101 (2011). https://doi.org/10.1063/1.3599453
  18. W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 80, 1338 (1958). https://doi.org/10.1021/ja01539a016
  19. M. Seredych, J. A. Rossin, and T. J. Bendosz, Carbon, 49, 4392 (2011). https://doi.org/10.1016/j.carbon.2011.06.032
  20. Y. S. Mok, J.-O. Jo, and J. C. Whitehead, Chem. Eng. J., 142, 56 (2008). https://doi.org/10.1016/j.cej.2007.11.012
  21. V. Gunasekaran, PhD Dissertation, Jeju National University, Korea (2011).
  22. P. Kopf, E. Gilbert, and S. H. Eberle, J. Photochem. Photobiol. A., 136, 163 (2000). https://doi.org/10.1016/S1010-6030(00)00331-2
  23. K. Okamoto, Y. Yamamoto, H. Tanaka, M. Tanaka, and A. Itaya, Bull. Chem. Soc. Jpn., 58, 2015 (1985). https://doi.org/10.1246/bcsj.58.2015
  24. A. House, H. Lachheb, and M. Ksibi, Appl. Catal. B, 31, 145 (2001). https://doi.org/10.1016/S0926-3373(00)00276-9
  25. B. Yanhon, C. Jierong, Y. Yun, G. Limei, and Z. Chunhong, Chemosphere, 81, 408 (2010). https://doi.org/10.1016/j.chemosphere.2010.06.071