• 제목/요약/키워드: Toxic model

검색결과 337건 처리시간 0.031초

염소가스의 소규모 연속누출에서 분산특성 및 독성영향 해석 (Analysis of Dispersion Characteristics and Toxic Effect in the Small-Scale Continuous Release of Chlorine Gas)

  • 김태옥;장서일;이영재
    • 한국가스학회지
    • /
    • 제8권2호
    • /
    • pp.8-14
    • /
    • 2004
  • 본 연구는 염소가스의 소규모 연속누출에서 분산특성과 독성영향을 해석하였다. 염소 농도의 실험값과 이론값을 비교한 결과, Briggs의 분산계수와 유효누출높이를 사용한 가우시안 모델이 BM 모델보다 적용성이 우수하였다. 또한 가우시안 모델에 의해 염소농도를 산출하고 해석한 결과, 염소분산은 누출속도 보다 대기안정도와 바람속도에 크게 영향을 받으며, 독성영향은 염소분산에 미치는 매개변수의 영향과 유사한 경향을 나타내었다. 이때, 여러 독성기준에 의해 산출된 피해범위로부터 인명을 보호하기 위한 위험지역을 파악할 수 있었다.

  • PDF

고-기상 유해물질 대기확산에 관한 수치해석 (A Numerical Study on the Toxic Gaseous and Solid Pollutant Dispersion in an Open Atmosphere)

  • 이선경;송은영;장동순
    • 한국안전학회지
    • /
    • 제9권1호
    • /
    • pp.146-154
    • /
    • 1994
  • A series of numerical calculations are performed in order to investigate the dispersion mechanism of toxic gaseous and solid pollutants in extremely short-term and short range. The calculations are carried out in an open space characterized by turbulent boundary layer. The simulation is made by the use of numerical model, in which a control-volume based finite difference method is used together with the SIMPLEC algorithm for the resolution of the pressure-velocity coupling problem. The Reynolds stresses are solved by two-equation, k-$\varepsilon$ model modified for buoyancy. The major parameters consider-ed in this study are temperature, velocity and Injection height of toxic gases, environmental conditions such as temperature and velocity of free stream air, and topographic factor. The results are presented and discussed in detail. The flow field is commonly characterized by the formation of a strong recirculation zone due to the upward motion of the hot toxic gas and ground shear stress. The driving force of the upward motion is explained by the effect of thermal buoyancy of hot gas and the difference of inlet velocity between toxic gas and free stream.

  • PDF

여천지역 누출사고 시나리오에 따른 인근 지역 피해 분석 (Offsite Consequence Analysis for Accidental Release Scenarios of Toxic Substances in the Yochon Area)

  • 김영성
    • 한국대기환경학회지
    • /
    • 제15권2호
    • /
    • pp.151-158
    • /
    • 1999
  • Offsite consequences resulting form worst-case scenarios involving release of toxic substances in the Yochon area were estimated using the ALOHA(Areal Locations of Hazardous Atmospheres) model. Eight toxic substances, including NH3, were considered; five were toxic gases and three were toxic liquids at ambient temperature. For toxic gases, the entire quantity was assumed to be released at a constant rate during a 10-minute period. For toxic liquids, the entire quantity stored in the tank was assumed to be spilled and spread and spread instantaneously to form a pool with a depth of 1cm, and then evaporated over some period of time. Except for phosgene and toluene 2,4-diisocyanate, for which concentration levels corresponding to human health effects are very low, average distances of the area at risk of adverse health effects for a 1- tom release were predicted to be $2.3{\pm}1.1 km$ for the worst-case meteorological conditions and $0.93{\pm}0.69km$ under typical meteorological conditions of the Yochon are. Because a large number of people were predicted to be affected in the current analysis, refined analyses considering both realistic accident scenarios and topographic effects were warranted.

  • PDF

독성물질 사용.저장시설에 대한 개인적 위험성 산정에 관한 연구 (A Study on the Individual and Societal Risk Estimation for the Use and Storage Facility with Toxic Materials)

  • 김성빈;김윤화;이철;엄성인;고재욱;백종배
    • 한국안전학회지
    • /
    • 제12권1호
    • /
    • pp.51-59
    • /
    • 1997
  • These days leakage incidents of toxic materials cause serious effects on the nearby residents as well as the workers around the accidents accompanying massive material losses and human damages through widening influential areas. The risk measure through adequate quantitative analysis as well as the qualitative analysis of the leakage incidents of toxic materials becomes an urgent issue. The damage of the leakage incident on the surrounding area of the dangerous toxic material facilities was calculated quantitatively by adopting several models in this research. First, the calculations of the leakage velocity from the factories were performed by using source model for the assessment of the influential area, and the damages on the nearly residents were calculated by using the dispersion model and the effort model. The probability of the Incidents was computed based on "The manual for classification and priorization of major incidents" published by IAEA( International Atomic Energy Agency ). Above calculated damage area and incident probability were further adopted in this study to induce the individual and societal risk, quantitatively. The calculated data of the real Incident of the toxic material leakage showed reasonable agreements to the actual damage of the incidents, which showed a validity of this study. The result of this study might be a helpful measure for predicting damages and preparing safety systems for similar kinds of incidents.incidents.

  • PDF

독성물질 누출의 강도 산정 방법에 관한 비교 연구 (A Comparative Study on the Method of Consequence Estimation for Release of Toxicant Substances)

  • 김윤화;백종배;고재욱
    • 한국안전학회지
    • /
    • 제9권1호
    • /
    • pp.89-94
    • /
    • 1994
  • Two methods, the numerical method of CPQRA and the manual method of IAEA, were used to estimate the effect distance from release and dispersion of toxic materials. The Gaussian plume model which has a weather stability class D with wind velocity of 5m/s was applied to calculate dispersion of toxic materials. Also, probit function were employed to evaluate the human fatality as a result of exposure to toxic gases. Furthermore, concentration of toxic materials corresponding to LC$_{50}$ for 30 min could be determined by setting Pr as 5.0 and solving the probit function. Calculations were conducted by employing chlorine and ammonia as toxic materials because they are not only most commonly used In chemical plants but also very harmful to humans. Calculated results by employing toxic materials indicated that the effect distance from the CPQRA method was between the minimum and maximum distance from the method proposed by IAEA.A.

  • PDF

화학장치설비의 유해독성가스 누출에 대한 분산모델링 방법론 (Dispersion Modeling Methodology for Hazardous/Toxic Gas Releases from Chemical Plant Facilities)

  • 송덕만
    • 한국가스학회지
    • /
    • 제1권1호
    • /
    • pp.73-80
    • /
    • 1997
  • 본 연구는 화학장치설비중 저장탱크에서 누출된 유해독성가스인 염소의 풍하거리에 따른 10분 평균, 30분 평균 및 1시간 평균 최대 지표면 농도를 산출하여 염소가스의 법적 규제농도인 IDLH 및 ERPG-3 농도들과 비교함으로써 유해위험거리 (hazard distance) 또는 독성완충거리 (toxic buffer distance)를 정량적으로 예측하는 분산모델링 방법론을 개발하고자 수행되었다. 본 분산모델링을 위하여 누출원모델, 분산모델, 기상 및 지형자료들 이 SuperChems 모델에 입력자료로 사용되었으며, 대기의 안정도, 풍속, 표면거칠기 길이의 변화에 따른 지표면 농도의 영향이 평가되었다.

  • PDF

TEMPORAL AND SPATIO-TEMPORAL DYNAMICS OF A MATHEMATICAL MODEL OF HARMFUL ALGAL INTERACTION

  • Mukhopadhyay, B.;Bhattacharyya, R.
    • Journal of applied mathematics & informatics
    • /
    • 제27권1_2호
    • /
    • pp.385-400
    • /
    • 2009
  • The adverse effect of harmful plankton on the marine ecosystem is a topic of deep concern. To investigate the role of such phytoplankton, a mathematical model containing distinct dynamical equations for toxic and non-toxic phytoplankton is analyzed. Stability analysis of the resulting three equation model is carried out. A continuous time variation in toxin liberation process is incorporated into the model and a stability analysis of the resulting delay model is performed. The distributed delay model is then extended to include the spatial distribution of plankton and the delay-diffusion model is analyzed with spatial and spatiotemporal kernels. Conditions for diffusion-driven instability in both the cases are derived and compared to explore the significance of these kernels. Numerical studies are performed to justify analytical findings.

  • PDF

하천에 유입된 유해화학물질의 혼합 해석을 위한 2차원 오염물질 이동모형 반응항 개발 (Development of response terms for contaminant transport in two-dimensional model for mixing analysis of toxic chemicals in rivers)

  • 신동빈;신재현;서일원
    • 한국수자원학회논문집
    • /
    • 제53권2호
    • /
    • pp.141-154
    • /
    • 2020
  • 우리나라에서 일어나는 하천 내 유해화학물질 유입사고 발생건수는 매년 증가하는 추세를 보이고 있다. 이에 대응하기 위해 국가차원의 수질오염 사고대응체계를 구축하여 사고방재를 위한 체계적인 절차를 수립하였으나, 우리나라의 사고대응체계는 해외의 수질모형을 차용하고 있기 때문에 모형의 매개변수 입력 및 검보정에 어려움이 있다. 이에 따라 본 연구는 하천에 유출된 유해화학물질의 거동을 분석하기 위한 수심 평균 2차원 하천수질모형을 개발하고, 유해화학물질의 특성을 고려한 유의반응항 판별을 통해 효율적 모의수행을 위한 기법을 제시하였다. 수심 평균 2차원 하천수질모형인 CTM-2D에 흡·탈착, 휘발 반응을 재현할 수 있는 반응항을 추가하고, 이를 검증하기 위해 해석해와 수치해를 비교한 결과 0.1% 미만의 오차를 보여 모형의 타당성을 입증하였다. 또한 낙동강-금호강 합류부에 수질오염사고 가상시나리오를 구성하여 개발된 모형을 적용하였으며, 민감도 분석 기반 유의반응 판단을 통해 효율적 수질모의를 수행할 수 있었다.