• Title/Summary/Keyword: Toxic model

Search Result 335, Processing Time 0.028 seconds

Analysis of Dispersion Characteristics and Toxic Effect in the Small-Scale Continuous Release of Chlorine Gas (염소가스의 소규모 연속누출에서 분산특성 및 독성영향 해석)

  • Kim Tae-Ok;Jang Seo-Il;Lee Young-Jae
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.2 s.23
    • /
    • pp.8-14
    • /
    • 2004
  • This study analyzed dispersion characteristics and toxic effect in the small-scale continuous release of chlorine gas. We found that the Gaussian model using the Briggs' dispersion coefficient and the effective release height was better predicting experiments than the BM model. From chlorine concentrations calculated by Gaussian model, simulation results showed that the dispersion of chlorine was more affected by atmospheric stability and wind speed than release rate and that the toxic effect of chlorine gas was similar to the effect of parameters on chlorine dispersion. From effected areas with toxic criteria, damaged areas could be estimated to protect human.

  • PDF

A Numerical Study on the Toxic Gaseous and Solid Pollutant Dispersion in an Open Atmosphere (고-기상 유해물질 대기확산에 관한 수치해석)

  • 이선경;송은영;장동순
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.1
    • /
    • pp.146-154
    • /
    • 1994
  • A series of numerical calculations are performed in order to investigate the dispersion mechanism of toxic gaseous and solid pollutants in extremely short-term and short range. The calculations are carried out in an open space characterized by turbulent boundary layer. The simulation is made by the use of numerical model, in which a control-volume based finite difference method is used together with the SIMPLEC algorithm for the resolution of the pressure-velocity coupling problem. The Reynolds stresses are solved by two-equation, k-$\varepsilon$ model modified for buoyancy. The major parameters consider-ed in this study are temperature, velocity and Injection height of toxic gases, environmental conditions such as temperature and velocity of free stream air, and topographic factor. The results are presented and discussed in detail. The flow field is commonly characterized by the formation of a strong recirculation zone due to the upward motion of the hot toxic gas and ground shear stress. The driving force of the upward motion is explained by the effect of thermal buoyancy of hot gas and the difference of inlet velocity between toxic gas and free stream.

  • PDF

Offsite Consequence Analysis for Accidental Release Scenarios of Toxic Substances in the Yochon Area (여천지역 누출사고 시나리오에 따른 인근 지역 피해 분석)

  • 김영성
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.2
    • /
    • pp.151-158
    • /
    • 1999
  • Offsite consequences resulting form worst-case scenarios involving release of toxic substances in the Yochon area were estimated using the ALOHA(Areal Locations of Hazardous Atmospheres) model. Eight toxic substances, including NH3, were considered; five were toxic gases and three were toxic liquids at ambient temperature. For toxic gases, the entire quantity was assumed to be released at a constant rate during a 10-minute period. For toxic liquids, the entire quantity stored in the tank was assumed to be spilled and spread and spread instantaneously to form a pool with a depth of 1cm, and then evaporated over some period of time. Except for phosgene and toluene 2,4-diisocyanate, for which concentration levels corresponding to human health effects are very low, average distances of the area at risk of adverse health effects for a 1- tom release were predicted to be $2.3{\pm}1.1 km$ for the worst-case meteorological conditions and $0.93{\pm}0.69km$ under typical meteorological conditions of the Yochon are. Because a large number of people were predicted to be affected in the current analysis, refined analyses considering both realistic accident scenarios and topographic effects were warranted.

  • PDF

A Study on the Individual and Societal Risk Estimation for the Use and Storage Facility with Toxic Materials (독성물질 사용.저장시설에 대한 개인적 위험성 산정에 관한 연구)

  • Kim, S.B.;Kim, Y.H.;Lee, C.;Um, S.I.;Ko, J.W.;Baek, J.B.
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.1
    • /
    • pp.51-59
    • /
    • 1997
  • These days leakage incidents of toxic materials cause serious effects on the nearby residents as well as the workers around the accidents accompanying massive material losses and human damages through widening influential areas. The risk measure through adequate quantitative analysis as well as the qualitative analysis of the leakage incidents of toxic materials becomes an urgent issue. The damage of the leakage incident on the surrounding area of the dangerous toxic material facilities was calculated quantitatively by adopting several models in this research. First, the calculations of the leakage velocity from the factories were performed by using source model for the assessment of the influential area, and the damages on the nearly residents were calculated by using the dispersion model and the effort model. The probability of the Incidents was computed based on "The manual for classification and priorization of major incidents" published by IAEA( International Atomic Energy Agency ). Above calculated damage area and incident probability were further adopted in this study to induce the individual and societal risk, quantitatively. The calculated data of the real Incident of the toxic material leakage showed reasonable agreements to the actual damage of the incidents, which showed a validity of this study. The result of this study might be a helpful measure for predicting damages and preparing safety systems for similar kinds of incidents.incidents.

  • PDF

A Comparative Study on the Method of Consequence Estimation for Release of Toxicant Substances (독성물질 누출의 강도 산정 방법에 관한 비교 연구)

  • 김윤화;백종배;고재욱
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.1
    • /
    • pp.89-94
    • /
    • 1994
  • Two methods, the numerical method of CPQRA and the manual method of IAEA, were used to estimate the effect distance from release and dispersion of toxic materials. The Gaussian plume model which has a weather stability class D with wind velocity of 5m/s was applied to calculate dispersion of toxic materials. Also, probit function were employed to evaluate the human fatality as a result of exposure to toxic gases. Furthermore, concentration of toxic materials corresponding to LC$_{50}$ for 30 min could be determined by setting Pr as 5.0 and solving the probit function. Calculations were conducted by employing chlorine and ammonia as toxic materials because they are not only most commonly used In chemical plants but also very harmful to humans. Calculated results by employing toxic materials indicated that the effect distance from the CPQRA method was between the minimum and maximum distance from the method proposed by IAEA.A.

  • PDF

Dispersion Modeling Methodology for Hazardous/Toxic Gas Releases from Chemical Plant Facilities (화학장치설비의 유해독성가스 누출에 대한 분산모델링 방법론)

  • Song Duk-Man
    • Journal of the Korean Institute of Gas
    • /
    • v.1 no.1
    • /
    • pp.73-80
    • /
    • 1997
  • This study was performed to develop the dispersion modeling methodology for quantitative prediction of the hazard distance or toxic buffer distance by comparing 10-min average, 30-min average, and 1-hr average maximum ground-level concentration with $Cl_2$ regultaion concentration, IDLH and ERPG-3 concentration for hazardous toxic gas, $Cl_2$ releases from the storage tank of the chemical plant facilities. For this dispersion modeling, the source term model, dispersion model, meteorological and topographical data are incorporated into the SuperChems model, and then the effects of the atmospheric stability, wind speed, and surface roughness length changes on the maxum ground-level concentration were estimated.

  • PDF

TEMPORAL AND SPATIO-TEMPORAL DYNAMICS OF A MATHEMATICAL MODEL OF HARMFUL ALGAL INTERACTION

  • Mukhopadhyay, B.;Bhattacharyya, R.
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.385-400
    • /
    • 2009
  • The adverse effect of harmful plankton on the marine ecosystem is a topic of deep concern. To investigate the role of such phytoplankton, a mathematical model containing distinct dynamical equations for toxic and non-toxic phytoplankton is analyzed. Stability analysis of the resulting three equation model is carried out. A continuous time variation in toxin liberation process is incorporated into the model and a stability analysis of the resulting delay model is performed. The distributed delay model is then extended to include the spatial distribution of plankton and the delay-diffusion model is analyzed with spatial and spatiotemporal kernels. Conditions for diffusion-driven instability in both the cases are derived and compared to explore the significance of these kernels. Numerical studies are performed to justify analytical findings.

  • PDF

Development of response terms for contaminant transport in two-dimensional model for mixing analysis of toxic chemicals in rivers (하천에 유입된 유해화학물질의 혼합 해석을 위한 2차원 오염물질 이동모형 반응항 개발)

  • Shin, Dongbin;Shin, Jaehyun;Seo, Il Won
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.2
    • /
    • pp.141-154
    • /
    • 2020
  • The accidents of toxic chemical spill into rivers are increasing in recent years due to expansion of heavy industries in Korea. In order to respond to the chemical spills, accident response systems have been established for both main rivers and tributary rivers. However, since these accident response system adopted the water quality models imported from the foreign countries, it is difficult to acquire the model parameters and to calibrate and validate the water quality models. Therefore, this study developed a depth-averaged two-dimensional river water quality model to analyze the behavior of hazardous chemicals in rivers and proposed an efficient simulation execution framework by identifying the significant reaction mechanisms considering the characteristics of the toxic chemicals. The depth-averaged two-dimensional river water quality model CTM-2D was upgraded by adding reaction terms representing mechanisms of the adsorption, desorption, and volatilization of toxic chemicals. In order to verify the model, the analytical solution was compared with the numerical solution, and results showed that the error was less than 0.1%. In addition, the model was applied to a virtual scenario which is a water pollution accident at the confluence of the Nakdong River - Kumho River, and model results showed that an efficient simulation could be carried out by activating only significant reactions which were assessed by the sensitivity analysis.