• Title/Summary/Keyword: Toxic metals

Search Result 457, Processing Time 0.025 seconds

Physiological Response and Cadmium Accumulation of MuS1 Transgenic Tobacco Exposed to High Concentration of Cd in Soil: Implication to Phytoremediation of Metal Contaminated Soil (토양 중 고농도 카드뮴에 노출된 MuS1 형질전환 담배 (Nicotiana tabacum cv. Xanthi)의 생리적 반응 및 카드뮴 축적: 식물학적 오염토양정화를 위한 형질전환 식물 탐색)

  • Jeoung, Yoon-Hwa;Kim, Young-Nam;Kim, Kwon-Rae;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.1
    • /
    • pp.58-64
    • /
    • 2013
  • The objective of this study was to understand the physiological response and cadmium accumulation of MuS1 transgenic tobacco exposed to high concentration of Cd in soil. For this, a pot experiment was carried out in a greenhouse for a month, with two lines of MuS1 transgenic tobaccos (S4 and S6) and non-transgenic tobacco cultivated in the soils spiked at three different Cd concentrations (0, 60 and 180 mg $kg^{-1}$). Both transgenic and non-transgenic tobacco showed visible toxic symptoms such as chlorosis and leaf roll as treated concentration increased. The net photosynthetic rates of MuS1 plants (S4 and S6) exposed at 180 mg $kg^{-1}$ Cd were 6.3 and $7.7{\mu}mol\;m^{-2}s^{-1}$, being higher than those of the non-transgenic plant ($4.8{\mu}mol\;m^{-2}s^{-1}$). Values of stomatal conductance of MuS1 transgenic plants (0.05 and 0.008 mmol $H_2O\;m^{-2}s^{-1}$) were also higher than those of non-transgenic plant (0.03 mmol $H_2O\;m^{-2}s^{-1}$). In addition, fresh and dry weights of MuS1 transgenic plants were heavier than those of non-transgenic plant. Likewise, MuS1 transgenic plants appeared to be better physiological performance than non-transgenic tobacco when exposed at high concentration of Cd in soil. With regard to metal accumulation, MuS1 transgenic tobaccos accumulated more Cd in their roots than non-transgenic tobacco implying that MuS1 transgenic tobacco is suggested to be used for phytostabilization of heavy metals.

A Study on the Protective Effect and Its Mechanism of Zinc against Immuno-cytotoxicity of Methylmercury (유기수은의 세포면역독성과 이에 대한 아연의 방어효과 및 기전)

  • 고대하;염정호;오경재
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.2
    • /
    • pp.82-91
    • /
    • 2001
  • This study was carried out to elucidate the protective effect of zinc chloride(ZnCl$_2$) and its mechanism against the immuno-cytotoxicity of methylmercury chloide($CH_3$HgCl). This study was observed in the culture of EMT-6 cells which are originated from mammary adenocarcinoma of Balb/c mouse. Cytotoxicity of metals was measured by cell viability and NO$_2$$^{[-10]}$ , and mitochondrial function was evaluated by adenosine triphosohate (ATP) production. $CH_3$HgCl significantly decreased the sythesis of nitric oxide(NO), ATP and glutathione(GSH) in a dose-dependent manner. ZnCl$_2$ significantly increased the synthesis of GSH in a dose-dependent manner, but synthesis of NO and ATP were not changed. The immuno-cytotoxicity of $CH_3$HgCl was not fully protected when combined addition of ZnCl$_2$, whereas ZnCl$_2$ prior to addition of $CH_3$HgCl completly protected the Hg-induced immuno-cytotoxicity. Similarly, intracellular accumulation of mercury significantly decreased by ZnCl$_2$. Degree of diminution of intracellular mercury was larger in ZnCl$_2$ prior to addition of $CH_3$HgCl than in combined addition of ZnCl$_2$ and $CH_3$HgCl.. Dithiothreitol(DTT) or buthionine sulfoximine(BSO) addition at 50$\mu$M or less, which was not toxic to the cells, did not affect synthesis of NO and ATP. DTT increased intracellular GSH level and DTT pretreatment protected toxicity induced by $CH_3$HgCl as shown complete recover in the NO and ATP values. BSO decreased intracellular GSH level and BSO pretreatment exaggerated toxicity induced by $CH_3$HgCl as shown synergistic reduction in the NO and ATP values. These results indicated that the protective effects of zinc against immuno-cytotoxicity of methylmercury associated with increasing cellular level of GSH. Increased intracellular GSH transports methylmercury to out of cells. In accordance with intracellular level of mercury decreased, immuno-cytotoxicity of methylmercury decreased. These result also suggest that the protective mechanism of zinc against the mercury toxicity would be exerted in the immune system in vivo.

  • PDF

Effect of Phosphate Fertilizer and Manure in Reducing Cadmium Phytoavailability in Radish-grown Soil (중금속 오염 농경지에서 축분퇴비와 인산비료의 혼용시용에 의한 카드뮴 식물이용성 저감효과)

  • Hong, Chang-Oh;Kim, Sang-Yoon;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.3
    • /
    • pp.261-267
    • /
    • 2011
  • ACKGROUND: Cadmium (Cd) has long been recognized as one of most toxic elements. Application of organic amendments and phosphate fertilizers can decrease the bioavailability of heavy metals in contaminated soil. METHODS AND RESULTS: This study was conducted to evaluate effect of combined application of phosphate fertilizer and manure in reducing cadmium phytoavailability in heavy metal contaminated soil. Phosphate fertilizers [Fused and super phosphate (FSP) and $K_2HPO_4$ (DPP)] and manure (M) were applied as single application (FSP, DPP, and M) to combined application (FSP+M and DPP+M) before radish seeding. $K_2HPO_4$ decreased $NH_4OAc$ extractable Cd and plant Cd concentration, mainly due to increases in soil pH and negative charge. However, FSP increased $NH_4OAc$ extractable Cd and plant Cd concentration. Manure significantly increased soil pH and negative charge. Combined application of phosphate fertilizer and manure were much more effective in reducing Cd phytoavailability than a simple application of each component. Calculated solubility diagram indicated that Cd concentrations in the solution of soils amended with phosphate fertilizers and manure were undersaturated with respect to all potential Cd minerals [$Cd_3(PO_4)_2$, $CdCO_3$, $Cd(OH)_2$, and $CdHPO_4$]. Plant Cd concentration and $NH_4OAc$ extractable Cd were negatively related to soil pH and negative charge. CONCLUSION: Alleviation of Cd phytoavailability with phosphate fertilizer and manure can be attributed primarily to Cd immobilization due to the increase in soil pH and negative charge rather than Cd and phosphate precipitation. Therefore, combined application of alkaline phosphate materials and manure is effective for reducing Cd phytoavailability.

Isolation and Degradation Activity of a TBTCl (Tributyltin Chloride) Resistant Bacteriain Gwangyang Bay (광양만에서 TBTCl (Tributyltin Chloride) 내성세균의 분리 및 분해활성)

  • Jeong, Seong-Yun;Son, Hong-Joo;Jeoung, Nam-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.4
    • /
    • pp.424-431
    • /
    • 2011
  • BACKGROUND: Tributyltin chloride is among the most toxic compounds known for aquatic ecosystems. Microorganisms are responsible for removal of TBTCl. Nevertheless, only a limited number of marine bacteria were investigated for biodegradation of TBTCl in Korea. METHODS AND RESULTS: The number of TBTCl resistant bacteria ranged from $2.5{\times}10^3$ to $3.8{\times}10^3$ cfu/mL in the seawater, and ranged from $3.2{\times}10^5$ to $9.1{\times}10^5$ cfu/g in the surface sediment, respectively. The morphological, physiological, and biochemical characteristics of TBTCl resistant bacteria were investigated by API 20NE and other tests. The most abundant species of TBTCl resistant bacteria were Vibrio spp. (19.2%), Bacillus spp. (16.2%), Aeromonas spp. (15.2%), and Pseudomonas spp. (13.1%), etc. Eleven TBTCl resistant isolates also had a resistance to heavy metals (Cd, Cu, Hg, and Zn). Among them, isolate T7 showing the strong TBTCl-resistance was selected. This isolate was identified as the genus Pantoea by 16S rRNA gene sequencing and designated as Pantoea sp. T7. In addition, this bacterium was cultivated up to the growth of 50.7% after 60 hrs at TBTCl concentration of $500{\mu}M$. TBTCl-degrading activity of Pantoea sp. T7 was measured by GC-FPD analysis. As a result of biological TBTCl-degradation at TBTCl concentration of $100{\mu}M$, TBTCl-removal efficiency of Pantoeasp. T7 was 62.7% after 40 hrs. CONCLUSION(S): These results suggest that Pantoea sp. T7 is potentially useful for the bioremediation of TBT contamination.

Experimental Studies on Dissolution Characteristics of a Heavy Metal(As) in Mining Waste (광산매립지에서 중금속(As)의 용출 특성에 관한 실험적 연구)

  • Han, Choon;Seo, Myoung-Jo;Yoon, Do-Young;Choi, Sang-Il;Lee, Hwa-Young;Kim, Sung-Kyu;Oh, Jong-Kee
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.1
    • /
    • pp.55-63
    • /
    • 1998
  • This study investigates the contamination mechanism of soil by drainages including acid rains around mining waste sites, and suggests the quantitative methods of prevention against soil contaminations and its alternatives. For these purposes, the dissolution of arsenic in soils, which is one of toxic heavy metals, has been examined experimentally using the artificial acidic solution. Also, in order to prevent dissolution of arsenic by acid rain, the effects of limestone for the neutrality method on the soil were investigated. The arsenic in soil specimen was dissolved by strong acidic solution below pH1.0. The maximum amount of dissolved arsenic increased with decreasing pH value. Furthermore, it was found very effective to use limestones for the neutrality method. The neutralization of limestones in acidic solution was found to follow the equation of chemical reaction-controlling formulation in unreacted-core models.

  • PDF

Environmental Tolerance for Pollutants in Littorina brevicula(Philippi) 2. The Growth, Metabolism and Histological Changes Exposed to TBTCl and Heavy Metals in Littorina brevicula (총알고둥 (Littorina brevicula(Philippi))의 오염원에 대한 환경내성 2. 유기주석 및 중금속에 대한 총알고둥의 성장, 대사 및 조직학적 변화)

  • CHIN Pyung;LEE Jung Ah;SHIN Yun Kyung;LEE Jung Sick
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.5
    • /
    • pp.593-600
    • /
    • 1999
  • The survival rates of Littorina brevicula exposed to experimental concentration regimes of TBTCl, HB and Cd on the large and the small size individuals during 80 days were $80\%$ at 0,9ppb TBTCl, 40 and $25\%$, respectively at 200ppb Hg, and 75 and $45\%$, respectively at 100ppb Cd. The growth rates of the experimental animals exposed to each concentration for 80 days was 0.023mm/day at control, 0.019mm/day at 0.1ppb and 0.014mm/day at 0.9ppb TBTCl, 0.022 mm/day at 5ppb, 0.008 mm/day at 200ppb Hg, and 0.017 mm/day at 5ppb, 0.008mm/day at 100ppb Cd. The respiration rates and excretion rates of the experimental animals exposed to chronic concentration of TBTCl, Hg and Cd were decreased until approximatively 40 days and increased after, Toxic effect of pollutants on L. brevicula was highest at TBTCl. The histological injury of L. brevicula exposed to TBTCl, Hg and Cd was shown at gill, digestive organ and muscle, respectively.

  • PDF

Environmental Effect of the Reduced Slag in the Electric Furnace (전기로 제강 환원슬래그 혼합토의 환경적 영향)

  • Na, Hyunsu;Yoon, Yeowon;Yoon, Gillim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.7
    • /
    • pp.23-29
    • /
    • 2011
  • The oxidation slag has been widely used in civil engineering project, whereas the reduced slag from electric furnace has yet to be applied. Consequently in order to find out the recycling method in civil engineering field, the mineral compositions of the reduced slag were analyzed and some tests on water quality were performed to estimate the potential release of toxic compounds. Slag-soil mixtures of 0, 10, 20 and 30%(dry weight) soil were prepared in lysimeter columns and the effluents were collected with the period of one, two and four week options in closed system, respectively. The result from qualitative and quantitative analysis using X-ray Diffraction(XRD) and X-ray Fluorescence(XRF) indicates that the main mineral of the reduced slag is $Ca_2(SiO_4)$, a kind of calcium silicate. Also, the leaching medium analyzed by Inductively Coupled Plasma Optical Emission Spectroscopy(ICP-OES) showed that main heavy metals such as Al, Fe and Mn are included in the reduced slag due to the effect of steel production process. It can be seen that the leachate does not violate the regulation guide line of waste material of heavy metal. Also the pH levels were increased from pH 6.9 for 0% soil to pH 10 for 30% soil. However the influence on leachate circulation period of one through four weeks was negligible.

Toxicological Assessment to Environmental Stressors Using Exoskeleton Surface Roughness in Macrophthalmus japonicus: New Approach for an Integrated End-point Development (칠게 외골격 표면 거칠기를 이용한 노출 독성 평가: 새로운 융합적 연구)

  • Park, Kiyun;Kwak, Ihn-Sil
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.4
    • /
    • pp.265-271
    • /
    • 2021
  • Intertidal mud crab (Macrophthalmus japonicus) is an organism with a hard chitinous exoskeleton and has function for an osmotic control in response to the salinity gradient of seawater. Crustacean exoskeletons change in their natural state in response to environmental factors, such as changes in the pH and water temperature, and the presence of pollutant substances and pathogen infection. In this study, the ecotoxicological effects of irgarol exposure and heavy metal distribution were presented by analyzing the surface roughness of the crab exoskeleton. The exoskeleton surface roughness and variation reduced in M. japonicus exposed to irgarol. In addition, it was confirmed that the surface roughness and variation were changed in the field M. japonicus crab according to the distribution of toxic heavy metals(Cd, Pb, Hg) in marine sediments. This change in the surface roughness of the exoskeleton represents a new end-point of the biological response of the crab according to external environmental stressors. This suggests that it may affect the functional aspects of exoskeleton protection, support, and transport. This approach can be utilized as a useful method for monitoring the aquatic environment as an integrated technology of mechanical engineering and biology.

Association between Soil Contamination and Blood Lead Exposure Level in Areas around Abandoned Metal Mines (폐금속광산지역 토양오염정도와 혈 중 납 노출 수준의 상관성)

  • Seo, Jeong-Wook;Park, Jung-Duck;Eom, Sang-Yong;Kwon, Hee-Won;Ock, Minsu;Lee, Jiho
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.4
    • /
    • pp.227-235
    • /
    • 2022
  • Background: Abandoned metal mines are classified as vulnerable areas with the highest level of soil contamination among risk regions. People living near abandoned metal mines are at increased risk of exposure to toxic metals. Objectives: This study aimed to evaluate the correlation between soil contamination levels in areas around abandoned metal mine and the blood lead levels of local residents. Moreover, we assess the possibility of using soil contamination levels as a predictive indicator for human exposure level. Methods: Data from the Survey of Residents around Abandoned Metal Mines (2013~2017, n=4,421) and Investigation of Soil Pollution in Abandoned Metal Mines (2000~2011) were used. A random coefficient model was conducted for estimation of the lower level (micro data) of the local resident unit and the upper level (macro data) of the abandoned metal mine unit. Through a fitted model, the variation of blood lead levels among abandoned metal mines was confirmed and the effect of the operationally defined soil contamination level was estimated. Results: Among the total variation in blood lead levels, the variation between abandoned mines was 18.6%, and the variation determined by the upper-level factors such as soil contamination and water contamination was 8.1%, which was statistically significant respectively. There was also a statistically significant difference in the least square mean of blood lead concentration according to the level of soil contamination (p=0.047, low: 2.32 ㎍/dL, middle: 2.38 ㎍/dL, high: 2.59 ㎍/dL). Conclusions: The blood lead concentration of residents living near abandoned metal mines was significantly correlated with the level of soil contamination. Therefore, in biomonitoring for vulnerable areas, operationally defined soil contamination can be used as a predictor for human exposure level to hazardous substances and discrimination of high-risk abandoned metal mines.

Effect of Cadmium on the Expression of ABC Transporters and Glutathione S-transferase in the Marine Ciliate Euplotes crassus (카드뮴이 해양 섬모충(Euplotes crassus)의 ABC Transporters와 GST 유전자 발현에 미치는 영향에 관한 연구)

  • Kim, Hokyun;Kim, Se-Hun;Kim, Ji-Soo;Lee, Young-Mi
    • Journal of Marine Life Science
    • /
    • v.1 no.2
    • /
    • pp.79-87
    • /
    • 2016
  • Heavy metals such as cadmium (Cd) are highly toxic to aquatic organisms and human, even at trace concentration. Herein we investigated the effect of Cd on the gene expression of ATP-binding cassette (ABC) transporters and glutathione S-transferase (GST) in marine ciliate Euplotes crassus. Seven ABC transporters and one GST genes were partially cloned and sequences, and thereafter, transcriptional modulation of these genes after exposure to Cd for 8 h was investigated using quantitative real time RT- PCR (qRT-PCR). As results, sequence analysis and phylogenetic study revealed that E. crassus ABCs are likely typical ABC transports, in particular, B/C family, and GST gene may be similar to GST theta isoform. A significant increase in the expression of ABCs, except for ABCB21 was observed in a concentration dependent manner after exposure to Cd (0.1 and 0.5 mg/l) for 8 h. The GST mRNA level was the highest at 0.5 mg/l Cd and then reduced until control level. These findings suggest that ABCs and GST may be involved in a protective mechanism against Cd-mediated toxicity in E. crassus.