DOI QR코드

DOI QR Code

Effect of Phosphate Fertilizer and Manure in Reducing Cadmium Phytoavailability in Radish-grown Soil

중금속 오염 농경지에서 축분퇴비와 인산비료의 혼용시용에 의한 카드뮴 식물이용성 저감효과

  • Hong, Chang-Oh (Plant Science Department, South Dakota State University) ;
  • Kim, Sang-Yoon (Division of Applied Life Science, Graduate School (Brain Korea 21 Program), Gyeongsang National University) ;
  • Kim, Pil-Joo (Division of Applied Life Science, Graduate School (Brain Korea 21 Program), Gyeongsang National University)
  • 홍창오 (사우스다코다 주립대학교 작물학과) ;
  • 김상윤 (경상대학교 대학원(BK 21 Program) 응용생명과학부) ;
  • 김필주 (경상대학교 대학원(BK 21 Program) 응용생명과학부)
  • Received : 2011.07.26
  • Accepted : 2011.09.22
  • Published : 2011.09.30

Abstract

ACKGROUND: Cadmium (Cd) has long been recognized as one of most toxic elements. Application of organic amendments and phosphate fertilizers can decrease the bioavailability of heavy metals in contaminated soil. METHODS AND RESULTS: This study was conducted to evaluate effect of combined application of phosphate fertilizer and manure in reducing cadmium phytoavailability in heavy metal contaminated soil. Phosphate fertilizers [Fused and super phosphate (FSP) and $K_2HPO_4$ (DPP)] and manure (M) were applied as single application (FSP, DPP, and M) to combined application (FSP+M and DPP+M) before radish seeding. $K_2HPO_4$ decreased $NH_4OAc$ extractable Cd and plant Cd concentration, mainly due to increases in soil pH and negative charge. However, FSP increased $NH_4OAc$ extractable Cd and plant Cd concentration. Manure significantly increased soil pH and negative charge. Combined application of phosphate fertilizer and manure were much more effective in reducing Cd phytoavailability than a simple application of each component. Calculated solubility diagram indicated that Cd concentrations in the solution of soils amended with phosphate fertilizers and manure were undersaturated with respect to all potential Cd minerals [$Cd_3(PO_4)_2$, $CdCO_3$, $Cd(OH)_2$, and $CdHPO_4$]. Plant Cd concentration and $NH_4OAc$ extractable Cd were negatively related to soil pH and negative charge. CONCLUSION: Alleviation of Cd phytoavailability with phosphate fertilizer and manure can be attributed primarily to Cd immobilization due to the increase in soil pH and negative charge rather than Cd and phosphate precipitation. Therefore, combined application of alkaline phosphate materials and manure is effective for reducing Cd phytoavailability.

인산에 의한 카드뮴의 식물저감 효과를 증진시키기 위해 서로 다른 특성의 두 인산제재인 용과린과 $K_2HPO_4$를 선정하여 축분퇴비와 혼용하여 처리한 후 알타리무 내 카드뮴 흡수특성과 토양 내 카드뮴의 특성을 조사하였다. $K_2HPO_4$는 토양의 pH와 음하전도를 증대시켜 토양 내 유효태 카드뮴 함량과 알타리무내 카드뮴 흡수농도를 저감시키는 효과를 나타내었다. 반면 용과린은 토양의 pH와 음하전도를 감소시켜 유효태 카드뮴 함량과 알타리무 내 카드뮴 함량을 증가시키는 효과를 나타내었다. 축분퇴비와 인산비료와의 혼용은 인산 제재의 특성에 관계없이 인산비료를 단독으로 시용하였을 때 보다 알타리무 내 카드뮴 흡수농도와 토양 내 유효태 카드뮴 함량을 감소시키는 효과가 훨씬 우수한 것으로 나타났다. 인산비료나 축분퇴비의 시용에 의해 토양 내 인산과 카드뮴의 침전반응에 의한 난용성의 카드뮴 화합물의 형성은 나타나지 않았다. 토양의 pH와 음하전도는 토양 내 유효태 카드뮴의 함량과 알타리무 내 카드뮴의 함량과 고도로 유의한 부의 상관관계를 나타내었다. 본 연구의 결과를 통하여 인산비료와 축분퇴비에 의한 카드뮴의 부동화는 인산과 카드뮴의 직접적인 침전반응에 의한 것이라기보다는 토양의 pH와 음하전도의 증대에 기인된 카드뮴의 흡착증대에 의한 것으로 판단되어진다.

Keywords

References

  1. Adriano, D.C., Woodford, T.A., Ciravolo, T.G., 1978. Growth and elemental composition of corn and bean seedlings as influenced by soil application of coal ash. J. Environ. Qual. 7, 416-421.
  2. Adriano, D.C., Pagem A.L,, Elseewim A.A., Chang, A, C., Straughan, I., 1980. Utilization and disposal of fly ash and other coal residues in terrestrial ecosystem. J. Environ. Qual. 9, 333-334.
  3. Adriano, D.C., 2001. Trace elements in terrestrial environments; biogeochemistry, bioavailability and risks of metals, 2nd edn. Springer, New York
  4. Allison, L. E., 1965. Organic carbon. In methods of soil analysis. Part II, Ed. C.A. Black, p.1367-1376, Am. Soc. Agron. Inc. Publ., Madison, WI
  5. Basta, N. T., Gradwohl, R., Snethen, K.L., Schroder, J.L., 2001. Chemical immobilisation of lead, zinc and cadmium in smelter contaminated soils using biosolids and rock phosphate. J. Environ. Qual. 30, 1222-1230. https://doi.org/10.2134/jeq2001.3041222x
  6. Bingham, F.T., 1979. Bioavailability of Cd to food crops in relation to heavy metal contents of sludge-amended soil. Environ. Health. Persp. 28, 39-43. https://doi.org/10.1289/ehp.792839
  7. Bolan, N.S., Naidu, R., Khan, M.A.R., Tillman, R.W., Syers, J.K., 1999. The effects of anion sorption on sorption and leaching of cadmium. Aust. J. Soil Res. 37, 445-460. https://doi.org/10.1071/S97046
  8. Bolan, N.S., Adriano, D.C., Duraisamy, P., Mani, A., 2003. Immobilization and phytoavailability of cadmium in variable charge soils. III. Effect of biosolid compost addition. Plant Soil. 256, 231-241. https://doi.org/10.1023/A:1026288021059
  9. Bremner, J.M., 1965. Total nitrogen. In Methods of Soil Analysis. Part II, Ed. C.A. Black, p.1149-1178, Am. Soc. Agron. Inc. Publ., Madison,WI
  10. Cao, R.L., Huo, W.R., He, Z.L., Hu, A.T., Deng, B.E., 1993. Study on controlling cadmium pollution in paddy soil in Luo Quio township, Dayie Conty. China Environ. Sci. 433-439.
  11. Chen, X., Wright, J.V., Conca, J.L., Peurrung, L.M., 1997. Evaluation of heavy metal remediation using mineral apatite. Water Air Soil Pollut. 98, 57-78.
  12. Hong, C.O., Lee, D.K., Chung, D.Y., Kim, P.J., 2007. Liming effects on cadmium stabilization in upland soil affected by gold mining activity. Arch. Environ. Con. Tox. 52, 496-502. https://doi.org/10.1007/s00244-006-0097-0
  13. Hong, C.O., Lee, D.K., Kim, P.J., 2008. Feasibility of Phosphate Fertilizer to immobilize Cadmium in a Field. Chemosphere 70, 2009-2015. https://doi.org/10.1016/j.chemosphere.2007.09.025
  14. Hong, C.O., Chung, D.Y., Lee, D.K., Kim, P.J., 2010. Comparison of Phosphate Materials for Immobilizing Cadmium in Soil. Arch. Environ. Contam. Toxicol. 58, 268-274. https://doi.org/10.1007/s00244-009-9363-2
  15. John, M.K., VanLaerhoven, C.J., Chuah, H.H., 1972. Factors affecting plant uptake and phytotoxicity of cadmium added to soils. Environ. Sci. Technol. 6, 1005-1009. https://doi.org/10.1021/es60071a008
  16. Jurinak, J.J., Santillian-Medrano, J., 1974. The chemistry and transport of lead and cadmium in soils. Rep. 18. Utah Agric. Exp. Stn., Logan.
  17. Khan, D.H., Frankland, B., 1983. Effects of cadmium and lead on radish plants with particular reference to movement of metals through soil profile and plant. Plant Soil 70, 335-345. https://doi.org/10.1007/BF02374890
  18. Krebs, R., Gupta, S.K., Furrer, G., Schulin, R., 1998. Solubility and plant uptake of metals with and without liming of sludgeamended soils. J. Environ. Qual. 27, 18-23.
  19. Levi-Minzi, R., Petruzzelli, G., 1984. The influence of phosphate fertilizers on Cd solubility in soil. Water Air Soil Pollut. 23, 423-429.
  20. Lindsay, W.L., 1979. Chemical Equilibria in Soils. jchn Wiley & Sons, Inc.
  21. McGowen, S.L., Basta, N.T., Brown, G.O., 2001. Use of diammonium phosphate to reduce heavy metal solubility and transport in smelter-contaminated soil. J. Environ. Qual. 30, 493-500. https://doi.org/10.2134/jeq2001.302493x
  22. Merrington, G., Madden, C., 2000. Changes in cadmium and zinc phytoavailability in agricultural soil after amendment with papermill sludge and biosolid. Commun. Soil Sci. Plant Anal 31, 759-776. https://doi.org/10.1080/00103620009370475
  23. Naidu, R., Bolan, N.S., Kookana, R.S., Tiller, K.G., 1994. Ionicstrength and pH effects on the adsorption of cadmium and the surface charge of soils. Eur. J. Soil Sci. 45, 419-429. https://doi.org/10.1111/j.1365-2389.1994.tb00527.x
  24. Page, A.L., Elseewi, A.A., Straughan, I.R., 1979. Physical and chemical properties of fly ash from coal-fired power plants with reference to environmental impacts. Residue Rev. 71, 83-120.
  25. Pierzynski, G.M., Schwab, A.P., 1993. Bioavailability of zinc, cadmium and lead in a metal contaminated alluvial soil. J. Environ. Qual. 22, 247-254.
  26. Seaman, J.C., Arey, J.S., Bertsch, P.M., 2001. Immobilization of nickel and other metals in contaminated sediments by hydroxyapatite addition. J. Environ. Qual. 30, 460-469. https://doi.org/10.2134/jeq2001.302460x
  27. Sparks, D.L., 1996. Methods of soil analysis Part 3 Chemical methods. Soil Science Society of America, Inc. American Society of Agronomy, Inc. p.1146-1155.
  28. Takijima, Y., Katsumi, F., 1973. Cadmium contamination of soils and rice plants caused by zinc mining IV. Use of soil amendment materials for the control of Cd uptake by plants. Soil Sci. Plant Nutr. 19, 235-244. https://doi.org/10.1080/00380768.1973.10432593
  29. United States Salinity Laboratory Staff., 1954. Diagnosis and Improvement of Saline and Alkali Soils. U. S. Dept. Agr. Handbook 60.
  30. Wu, Y.Y,. Chen, T., Kong, Q.X., Tan, F., Zhang, S.C., 1984. Cadmium contamination of Zhangshi irrigation area and ways of improving. Acta Sci Circ. 4, 275-283.

Cited by

  1. Characteristics of Heavy Metal Accumulation and Removing from Soil using Korean Native Plant, Liriope platyphylla for Phytoremediation vol.23, pp.1, 2014, https://doi.org/10.5322/JESI.2014.23.1.61
  2. Current research trends for heavy metals of agricultural soils and crop uptake in Korea vol.31, pp.1, 2012, https://doi.org/10.5338/KJEA.2012.31.1.75