• Title/Summary/Keyword: Toxic gases

Search Result 224, Processing Time 0.027 seconds

A Study on the Possibility of Ignition by Disposable Lighter (사례를 통한 화재사(火災死)의 이해)

  • Jae, J.J.;Lee, C.W.;Keon, H.S.;Son, J.B.;Lee, J.I.;Choi, D.M.
    • Journal of Korean Institute of Fire Investigation
    • /
    • v.10 no.1
    • /
    • pp.59-75
    • /
    • 2007
  • The causes of the fire casualties were the heat burns, contacted by flame, before the period of industrialization. According to the economic has been developed drastically since 1990, residing space has been become bigger and sophistication and interior finishing materials have been diversified. Therefore, the suffocation casualties, caused by inspiration of toxic combustion gases, have been more increased than the flame casualties in recently. Also, the arson casualties have been increasing with the increasing of insurance crime to take the Insurance money. According to National Emergency Management Agency announcement, 31,778 fires was occurred nationwide in 2006 and the total casualties were 2,180 occurred. 446 persons were died among them. Because the exact investigation of fire, occurred the death, is very especially important that civil and criminal cases will be happened. Therefore, we studied about the cause of fire, the place of origin, and the group of casualties age on the axies of fires, which were occurred recently. And the identification method of fire casualties, the human behavior characteristic, the flame casualties and the suffocation casualties at fire scene.

  • PDF

Fabrication and Characteristics of Hot-film Air Flow Sensor for Automobile (자동차용 박막 히터형 공기유량센서의 제작 및 특성)

  • Kim, Hyung-Pyo;Park, Se-Kwang
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.5
    • /
    • pp.394-399
    • /
    • 1999
  • An automobile hot-film air flow sensor is deposited with platinum by sputtering method, patterned by photoresisted lift-off method, annealed in $1,000^{\circ}C$ and passivated with PI-2723. The TCR of the fabricated hot-film is about $3500\;ppm/^{\circ}C$. In the experiment, the output voltage of the sensor is in proportional to the fourth power root in the air mass flow range of 300 kg/h. The error in the full flow range is about ${\pm}0.7%$. In the range of air temperature of $-20^{\circ}C{\sim}120^{\circ}C$, the error is about ${\pm}1%$ that is ${\pm}2%$ lower than that of the reference sensor. Therefore, the fabricated hot-film air flow sensor satisfies the specification for automobile. Lower temperature error of the sensor provides to control the precise air/fuel ratio of automobile engine and results in improvement of a fuel mileage and the less amount of toxic gases emitted by automobile.

  • PDF

Understanding Three-dimensional Printing Technology, Evaluation, and Control of Hazardous Exposure Agents (3D 프린팅 기술의 이해, 유해 인자 노출 평가와 제어)

  • Park, Jihoon;Jeon, Haejoon;Oh, Youngseok;Park, Kyungho;Yoon, Chungsik
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.3
    • /
    • pp.241-256
    • /
    • 2018
  • Objectives: This study aimed to review the characteristics of three-dimensional printing technology focusing on printing types, materials, and health hazards. We discussed the methodologies for exposure assessment on hazardous substances emitted from 3D printing through article reviews. Methods: Previous researches on 3D printing technology and exposure assessment were collected through a literature review of public reports and research articles reported up to July 2018. We mainly focused on introducing the technologies, printing materials, hazardous emissions during 3D printing, and the methodologies for evaluation. Results: 3D printing technologies can be categorized by laminating type. Fused deposition modeling(FDM) is the most widely used, and most studies have conducted exposure assessment using this type. The printing materials involved were diverse, including plastic polymer, metal, resin, and more. In the FDM types, the most commonly used material was polymers, such as acrylonitrile-butadiene-styrene(ABS) and polylactic acids(PLA). These materials are operated under high-temperature conditions, so high levels of ultrafine particles(mainly nanoparticle size) and chemical compounds such as organic compounds, aldehydes, and toxic gases were identified as being emitted during 3D printing. Conclusions: Personal desktop 3D printers are widely used and expected to be constantly distributed in the future. In particular, hazardous emissions, including nano sized particles and various thermal byproducts, can be released under operation at high temperatures, so it is important to identify the health effects by emissions from 3D printing. Furthermore, appropriate control strategies should be also considered for 3D printing technology.

Optical Characteristics of Phosphorescent Materials with Water-based Ceramics (축광세라믹스의 광학적 특성에 관한 연구)

  • Fujita Akihiro;Kagami Shinya;Hur Man-Sung;Jones Mark I
    • Fire Science and Engineering
    • /
    • v.19 no.4 s.60
    • /
    • pp.42-46
    • /
    • 2005
  • This study is intended to examine the degree of phosphorescent luminance in proportion to the amount of phosphorescent pigments in the ceramic based coating. The results of this study were that the degree of phosphorescent luminance was Increased in proportion to the amount of phosphorescent pigments in the ceramic based coatings. Samples with more than $20\%$ of phosphorescent pigments exceeded the Japanese Industrial Standard for security signs. Luminance levels 10 times greater than the KS and JIS standard were obtained with a concentration of $50\%$. The luminance increased initially with the number of applications of the ceramic based coating but there was no further increase for more than 4 applications. The water-based phosphorescent ceramics developed here are made entirely of inorganic materials and do not generate toxic gases. The optical characteristics of these materials makes them suitable for use in phosphorescent emergency exit signs in place of the traditionally used vinyl chloride materials.

Evacuation Simulation for the Exit with a Windbreak Door in Underground Arcade (지하상가 출입구 방풍문 설치에 따른 피난안전해석)

  • Choi, Young-Sang;Jeon, Heung-Kyun;Choo, Hong-Lok
    • Fire Science and Engineering
    • /
    • v.23 no.3
    • /
    • pp.1-10
    • /
    • 2009
  • This paper presents a study on the evacuation analysis in underground arcade. In this study, the effect of the exit with a windbreak door has been investigated by using evacuation simulation program (building EXODUS). Also, the simulation has included the impact of smoke, heat and toxic gases by fire simulation program (CFAST). The results were obtained for the conditions of without and with door of the two exit with 1,088 evacuation population. As a results, for non-fire evacuation, there was only a little difference of evacuation time for both conditions. However, for fire emergency evacuation, the evacuation time for the condition with door increased more 110 seconds than for the condition without door. When the auto door not opened, the evacuation time was increased more 670 seconds than for the condition without door. Consequently, in case of fire, the automatic door should be operating by the signal of fire detector and keep open when the fire accidents. To lead the evacuees well to the escape route the luminaries for an emergency exit sign have to be reinforced to the wall and floor around the exit.

Types & Characteristics of Chemical Substances used in the LCD Panel Manufacturing Process (LCD 제조공정에서 사용되는 화학물질의 종류 및 특성)

  • Park, Seung-Hyun;Park, Hae Dong;Ro, Jiwon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.3
    • /
    • pp.310-321
    • /
    • 2019
  • Objectives: The purpose of this study was to investigate types and characteristics of chemical substances used in LCD(Liquid crystal display) panel manufacturing process. Methods: The LCD panel manufacturing process is divided into the fabrication(fab) process and module process. The use of chemical substances by process was investigated at four fab processes and two module processes at two domestic TFT-LCD(Thin film transistor-Liquid crystal display) panel manufacturing sites. Results: LCD panels are manufactured through various unit processes such as sputtering, chemical vapor deposition(CVD), etching, and photolithography, and a range of chemicals are used in each process. Metal target materials including copper, aluminum, and indium tin oxide are used in the sputtering process, and gaseous materials such as phosphine, silane, and chlorine are used in CVD and dry etching processes. Inorganic acids such as hydrofluoric acid, nitric acid and sulfuric acid are used in wet etching process, and photoresist and developer are used in photolithography process. Chemical substances for the alignment of liquid crystal, such as polyimides, liquid crystals, and sealants are used in a liquid crystal process. Adhesives and hardeners for adhesion of driver IC and printed circuit board(PCB) to the LCD panel are used in the module process. Conclusions: LCD panels are produced through dozens of unit processes using various types of chemical substances in clean room facilities. Hazardous substances such as organic solvents, reactive gases, irritants, and toxic substances are used in the manufacturing processes, but periodic workplace monitoring applies only to certain chemical substances by law. Therefore, efforts should be made to minimize worker exposure to chemical substances used in LCD panel manufacturing process.

Design of Integrated Safery System for Sealed Places (밀폐된 공간을 위한 통합안전시스템의 설계)

  • Jeong, Min-Seung;Lee, Chang-Shin;Cho, Woo-Hyeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.1
    • /
    • pp.97-102
    • /
    • 2019
  • Disaster accidents at industrial sites have been increasing every year. In shipyards there are countless enclosed spaces causing issues like harmful-toxic gases stuck in those sealed areas. And due to such special and complicated structures of the working places with many layers of walls separating each other, there exist more issues of communication with workers trapped inside when accidents happen. Under this circumstance there must be a huge difficulty to evacuate or rescue the workers in case of any disaster. Therefore, in this paper, We would like to introduce the "integrated safety system" to more effectively deal with the problems and prevent such disasters in tough working environments. The suggested integrated safety system can prevent accidents in advance because it can control the data on the location of the workers in real time and the numerical values such as gas, oxygen, and carbon dioxide generated in the workplace in real time.

Effect of Annealing Process Pressure Over Atmospheric Pressure on Cu2ZnSn(S,Se)4 Thin Film Growth (대기압 이상의 열처리 공정압력이 Cu2ZnSn(S,Se)4(CZTSSe) 박막 성장에 미치는 영향)

  • Lee, Byeong Hoon;Yoo, Hyesun;Jang, Jun Sung;Lee, InJae;Kim, Jihun;Jo, Eunae;Kim, Jin Hyeok
    • Korean Journal of Materials Research
    • /
    • v.29 no.9
    • /
    • pp.553-558
    • /
    • 2019
  • $Cu_2ZnSn(S,Se)_4(CZTSSe)$ thin film solar cells areone of the most promising candidates for photovoltaic devices due to their earth-abundant composition, high absorption coefficient and appropriate band gap. The sputtering process is the main challenge to achieving high efficiency of CZTSSe solar cells for industrialization. In this study, we fabricated CZTSSe absorbers on Mo coated soda lime glass using different pressures during the annealing process. As an environmental strategy, the annealing process is performed with S and Se powder, without any toxic $H_2Se$ and/or $H_2S$ gases. Because CZTSSe thin films have a very narrow stable phase region, it is important to control the condition of the annealing process to achieve high efficiency of the solar cell. To identify the effect of process pressure during the sulfo-selenization, we experiment with varying initial pressure from 600 Torr to 800 Torr. We fabricate a CZTSSe thin film solar cell with 8.24 % efficiency, with 435 mV for open circuit voltage($V_{OC}$) and $36.98mA/cm^2$ for short circuit current density($J_{SC}$), under a highest process pressure of 800 Torr.

A Study on Flow Analysis according to the Cause of Gas Leakage in the Specialty Gas Supply Device for Semiconductors (반도체용 특수가스 공급장치 내부에서의 가스누출 원인에 따른 유동해석에 관한 연구)

  • Kim, Jung-Duck;Kwon, Ki-sun;Rhim, Jong-Guk;Yang, Won-Baek
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.2
    • /
    • pp.42-51
    • /
    • 2021
  • Facilities that supply specialty gases used in semiconductor manufacturing mainly handles with hazardous and dangerous substances with flammable, toxic, and corrosive properties, and gas cabinets are mainly used as such supply facilities. The effects of the supply facilities were analyzed for each leak through the rupture disk in the gas cabinet and a leak where the leak hole. In this case, gas leaked to the outside depending on the leak area. It is a factor that creates a risk depending on the concentration of the leaked gas. Depending on the risk of leakage, all measures such as safe operation procedures should be reviewed again.

Improvement of Carbon Dioxide Reduction Efficiency of Titanium Dioxide Photocatalyst Using 1-propanol (1-propanol 첨가에 따른 이산화타이타늄(TiO2) 광 촉매의 비표면적 향상 및 이산화탄소 환원 효율 향상)

  • Ha, Yuntae;Kwon, JinBeom;An, Heekyung;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.343-347
    • /
    • 2022
  • Recently, the problem of global warming caused by greenhouse gases is getting serious due to the development of industry and the increase in transportation means. Accordingly, the need for a technology to reduce carbon dioxide, which accounts for most of the greenhouse gas, is increasing. Among them, a catalyst for converting carbon dioxide into fuel is being actively studied. Catalysts for reducing carbon dioxide are classified into thermal catalysts and photocatalysts. In particular, the photocatalyst has the advantage that carbon dioxide can be reduced only by irradiating ultraviolet rays at room temperature without high temperature or additional gas. TiO2 is widely used as a photocatalyst because it is non-toxic and has high stability, but has a disadvantage of low carbon dioxide reduction efficiency. To increase the reduction efficiency, 1-propanol was used in the synthesis process. This prevents agglomeration of the catalyst and increases the specific surface area and pores of TiO2, thereby increasing the surface area in contact with carbon dioxide. As a result of measuring the CO2 reduction efficiency, it was confirmed that the efficiency of TiO2 with 1-propanol and TiO2 without 1-propanol was 19% and 12.3%, respectively, and the former showed a 1.5 times improved efficiency.