• Title/Summary/Keyword: Toxic gas index

Search Result 22, Processing Time 0.028 seconds

A Comparative Study on Toxic Gas Index and Stop Time of Mouse Activity (연소독성지수와 마우스 행동정시시간 비교 연구)

  • Cho, Nam-Wook;Lee, Jong-Cheon;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.25 no.4
    • /
    • pp.35-41
    • /
    • 2011
  • Casualties due to toxic smoke products have been reported as major fire damage. There are various tests in order to evaluate toxic smoke from a fire at home and abroad, and KS F 2271 as a test of the gas hazard of building finish materials has been conducted in Korea. The current test of the gas hazard exposes rodent, laboratory rat, to smoke gases to evaluate combustion gas toxicity by measuring acting time of that. this study performed a test of the gas hazard for combustible polymer material, Urethane and rubber flooring, and determined gases with the FT-IR. Quantitative results compared with standard value defined in BS6853 and toxicity index (R) was calculated. Using relative comparison with animal test and the toxicity index, We tried a variety of toxicity evaluation by correlation analysis of two tests.

A Research for Assessment Fire Toxic Gas of Construction Material Using FT-IR and FED (FT-IR과 FED를 이용한 건축 재료의 연소독성평가에 관한 연구)

  • Kim, Sung-Soo;Cho, Nam-Wook;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.27-31
    • /
    • 2011
  • In this study, combustion toxicity evaluation for building interior materials and study for toxicity as using FT-IR analysis. this experiment for the calculation of toxicity index, it using a cone calorimeter model in KS F ISO/TR 9122-4 as a fire model. It is following ISO 19702 procedure for assessing fire toxic gas using FT-IR. This experiment used calculation method for toxicity index (FED) among the international standards. $LC_{50}$ is a concentration that it can cause death to 50 % of experimental animal in 30 minutes - exposure gas test. comparison with the three kinds of toxicity fire gas of construction materials using toxicity index.

The Experimental Study on the Toxic Gases Released from the Floor Finishing Materials in Entertainment Service Industry Buildings (다중이용시설 바닥마감재의 연소가스 독성평가에 관한 실험 연구)

  • 강성동;이창우;현성호;윤명오
    • Fire Science and Engineering
    • /
    • v.16 no.2
    • /
    • pp.14-21
    • /
    • 2002
  • The several floor finishing materials that widely used in entertainment service industry buildings were evaluated according to the method of NES 713. Also, toxic gases of floor finishing materials in combustion without air flow rate were checked as concentration of fire gases variation according to time using gas analyzer. We had estimated the smoke hazard of floor finishing materials in fire. As results of gas analyses using the method of NES 713, toxic index of samples was estimated range of 2~9.7. Therefore, a large amount of toxic gases will release from a floor finishing materials fire and connoted great smoke hazard in fire.

A Study on Reforming Threshold Quantities of Toxic Substances in Process Safety Management (PSM 제출대상 독성물질의 규정량 합리화에 대한 연구)

  • Lee, Joo Yeob;Lee, Keun Won;Kim, Tae-Ok
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.4
    • /
    • pp.6-15
    • /
    • 2017
  • Process safety management(PSM) system was implemented in Korea since 1996. It helps reduce and prevent the occurrence of chemical accidents. There has been no review on the feasibility of the threshold quantities of the existing 21 species and the newly added toxic substances such as hydrogen bromide in the PSM system. The threshold quantities of the target toxic substances(25 species) of PSM were compared with domestic and foreign PSM systems similar to those of Korea. Also, we proposed the toxic harmfulness and hazard equation consisted of inhalation toxicity, NFPA index and others. According to this equation, high risk, medium risk and low risk are classified and reflected in the adjustment of threshold quantities. From the above research, It is expected to help to reduce confusion and burden of the workplaces due to the difference from other PSM system and improve in the threshold quantities.

A study on combustion gas toxicity of polymeric materials using FTIR gas analysis (FTIR 가스분석에 의한 고분자재료의 연소가스독성 평가)

  • Lee, Doo-Hyung;Kong, Young-Kun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.4 s.19
    • /
    • pp.79-84
    • /
    • 2005
  • When polymeric materials are exposed to fire condition, a lot of heat and toxic gases evolved and cause damage to property and human being. Especially toxic gases are major hazard to life safety. This study FTIR(Fourier Transform Infrared) spectrometer analysis was performaed to etermine the gas analysis and the concentration of gases evolved from PVC, FRP, SMC and Ureathane foam using ASTM E 1678 fire model. And FED toxicity index calculated from FTIR data also presented. By the comparison of animal test adopted in KS F 2271 and FTIR gas analysis method, FTIR gas analysis method can replace current animal toxicity test and produce precise and quantitative combustion gas data.

Process Hazard Review and Consequence Effect Analysis for the Release of Chlorine Gas from Its Storage Tank (염소저장탱크에서의 가스 누출시 공정위험검토 및 결과영향분석)

  • Ko, Jae-Sun;Kim, Hyo
    • Fire Science and Engineering
    • /
    • v.17 no.3
    • /
    • pp.61-73
    • /
    • 2003
  • Most of the accidents occurred from the chemical plants are related to the catastrophic gas release events when the large amount of toxic materials is leaked from its storage tank or transmitting pipe lines. In this case, the greatest concerns are how the spreading behaviors of leakages are depended on the ambient conditions such as air stability and other environmental factors. Hence, we have focused on the risk assessments and consequential analysis for chlorine as an illustrative example. As appeared in the result, Fire & Explosion Index depicted it a bit dangerous with presenting the comprehensive degrees of hazard 90.7. And as a result of Phast6.0/ALOHA, the trends of each scenario appeared considerably identical although there are some differences in the resulting effects according to the input data for the Gas Model. The consequence analysis is performed numerically based on the dense gas mode. In the future, using more correct input data, material properties, and topographical configuration, the method of this research will be useful for the guideline of the risk assessment when the release of toxicants breaks out.

A Study on the Improvement of Risk Assessment Items and Index for Sunken Ship (침몰선박 위해도 평가항목 및 평가지수 개선에 관한 연구)

  • Lee, Seung-Hyun;Choi, Hyuek-Jin;Suh, Jae-Joon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.6
    • /
    • pp.704-711
    • /
    • 2015
  • In this study, we have conducted a survey of AHP technique through the ocean experts to derive new items and revise assessment items and indices for risk of sunken ships based on the survey results. As a result of the survey, two new items such as accident cause and tidal current are derived. And it shows that existing items such as toxic liquid substance, remaining oil and explosive gas which were evaluated as one group are desirable to be evaluated respectively. Accordingly, we analyze the indices of the new eleven assessment items adjusted from the existing seven assessment items. As a result, the indices are ordered by toxic liquid substance, possibility of leaking, explosive gas, carrying capacity of fuel oil, sensitivity of sea environment, marine traffic environment, cause of accident, tidal current, keel clearance, ship type, and ship size. Especially, as compared with the indices of existing assessment items, the indices of sensitivity of sea environment and possibility of leaking are higher and the index of keel clearance is lower.

A comparative study on toxic gas index by BS6853 and gas hazardous test (BS6853을 활용한 연소독성지수와 가스유해성시험의 비교연구)

  • Cho, Nam-Wook;Lee, Jong-Cheon;Lee, Bong-Jae;Choi, Jae-Bum;Rie, Dong-Ho
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.155-159
    • /
    • 2011
  • 건축법에서 건축마감재료의 연소독성은 설치류(마우스)를 사용한 가스유해성시험으로 평가되고 있다. 최근 동물시험에 대한 최소화 및 대체시험개발의 필요성으로 인해 연소가스의 정량분석을 통한 독성지수연구가 요구되고 있다. 본 연구에서는 이미 철도차량에서 적용되고 있는 BS6853의 연소독성평가를 통해 기존 가스유해성시험결과의 상대적인 비교분석을 수행하여, 건축재료의 연소독성평가에 대한 다양한 가능성을 제시하고자 하였다.

  • PDF

A Study on the Fire Safety Performance of Interior Surface Materials in a Building (건축물의 실내건축 재료에 관한 화재안전성 연구)

  • Seo, Su-Eun;Shin, Seung-Woo
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2013.11a
    • /
    • pp.275-290
    • /
    • 2013
  • The main cause of building fire fatalities occur in the combustible material heat, smoke and toxic gases are. Building interior decoration, etc., especially as much of the harmful substances generated during combustion, and, used in domestic architecture wallpaper, ceiling, and other plastics, built-in foam insulation also analyzed recognition of fire hazards approach to test the conkalrorimiteo test, choedaeyeolbangchulryul through, chongbal heat, mass loss rate, generates carbon monoxide gas hazard ratio tests, analysis and evaluation rigid foam index testing the toxicity of hazardous material generated by performing a gas clean up and assess the material test results, the minimum order to provide data to quantify the risk of fire. Ensure fire safety of building materials, composite materials in order to test the various risk factors could be considered organic to the introduction of testing and evaluation is needed urgently.

  • PDF

Comparison of combustion gas release for FRP and seat cover materials to the Furnace temperature (연소온도 조건에 따른 FRP 및 시트커버 내장재의 연소가스 발생량 비교)

  • Lee, Duck-Hee;Jung, Woo-Sung;Lee, Cheul-Kyu;Yu, Mun-Chun
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1527-1532
    • /
    • 2007
  • We have evaluated the toxicity of interior materials for the railway passenger car by checking the release of $CO_2$, CO, NOx, SO2, HCl, HF, HBr, HCN. The NOx is one of the most effective for the determination of Toxic Index R value. It is generally known that the mechanism of thermal NOx generation without the Interior Material nitrogen source. This study started from the idea to check the NOx difference according to the furnace temperature. But from the results, it was revealed that NOx is not so sensitive for the furnace temperature in case of solid burning. Other gases such as HCN, CO were more changeable to the furnace Temp. We reported the test result as for toxicity index r(x).

  • PDF