• Title/Summary/Keyword: Toxic Chemical Emissions

Search Result 21, Processing Time 0.021 seconds

Human Toxicity Index and Toxic Substances Emissions in Korea Industries (한국의 산업별 독성물질 배출과 인체유해도 측정 -산업연관분석의 응용-)

  • Rhee, Hae-Chun;Kim, Ik;Hur, Tak
    • Environmental and Resource Economics Review
    • /
    • v.15 no.4
    • /
    • pp.643-672
    • /
    • 2006
  • This study has assessed the industrial human toxicity index by means of toxic substances emissions in South Korean industry. The data used in analysis are the 146 kinds of the toxic chemicals emissions and final demands, total outputs in the input-output table. As a results, human carcinogenic index was $11.86198{\times}10^3$ for overall industries, and $0.26360{\times}10^3$ for average. The industries of higher human toxicity index can be ranked as follows: Mother vehicles and parts (7.85033) > Pig iron and crude steel(4.57409) > Primary iron and steel products(4.36668) > Other transportation equipments and parts(3.43293) > Inorganic basic chemical products(2.64379), etc. Such result can be considered as the priority order of regulation based on industrial characteristics, when the demand and industrial policies should be carried out for the deduction fof toxic substances.

  • PDF

Gas Distribution Mapping and Source Localization: A Mini-Review

  • Taehwan Kim;Inkyu Park
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.75-81
    • /
    • 2023
  • The significance of gas sensors has been emphasized in various industries and applications, owing to the growing significance of environmental, social, and governance (ESG) management in corporate operations. In particular, the monitoring of hazardous gas leakages and detection of fugitive emissions have recently garnered significant attention across several industrial sectors. As industrial workplaces evolve to ensure the safety of their working environments and reduce greenhouse gas emissions, the demand for high-performance gas sensors in industrial sectors dealing with toxic substances is on the rise. However, conventional gas-sensing systems have limitations in monitoring fugitive gas leakages at both critical and subcritical concentrations in complex environments. To overcome these difficulties, recent studies in the field of gas sensors have employed techniques such as mobile robotic olfaction, remote optical sensing, chemical grid sensing, and remote acoustic sensing. This review highlights the significant progress made in various technologies that have enabled accurate and real-time mapping of gas distribution and localization of hazardous gas sources. These recent advancements in gas-sensing technology have shed light on the future role of gas-detection systems in industrial safety.

Emission Factors of Chemical Substances and the Abatement Policies in Korea Industries (화학물질 배출량 변동 요인과 배출저감 정책의 조합)

  • Rhee, Hae-Chun
    • Environmental and Resource Economics Review
    • /
    • v.18 no.4
    • /
    • pp.653-693
    • /
    • 2009
  • Using the Korean environmental input output analysis, this paper provides the emission intensities of the chemicals, especially, the toxic and carcinogenic substances, by linking the structure of demand, and the policy mix to abate these substances emissions. Acording to the results, Industries with the highest total emission intensities(TEI) of toxic substances are ranked : Printing and reproduction of recorded media(21), Other transportation equipment(26), Pulp and paper(11), Leather and fur products(9), Fiber yarn and fabrics(7). And the highest TEI of carcinogenic substances are Wood and wooden products(10), Motor vehicles and parts(25), Plastic and rubber products(15), Audio, video and communications equipment(23), etc.. The economic factors of changing these emissions are emission intensities and final demands. The effective combinations of policy instruments to abate these emissions are varied by the industries and substances. For example, Government need to execute the effective TEI management in the Fiber yarn and fabrics(7) sector, and, in furniture(27) sector, the reduction of final demand is more effective.

  • PDF

DEVELOPMENT ON ENHANCED LEAKED FUEL RECIRCULATION DEVICE OF LPLi ENGINE TO SATISFY SULEV STANDARD

  • Myung, C.L.;Kwak, H.;Park, S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.407-413
    • /
    • 2006
  • The liquefied petroleum gas(LPG), mixture of propane and butane, has the potential to reduce toxic hydrocarbon emissions and inhibit ozone formation due to its chemical composition. Conventional mixer systems, however, have problems in meeting the future lower emission standards because of the difficulty in controlling air-fuel ratio precisely according to mileage tar accumulation. Liquid Phase LPG injection(LPLi) system has several advantages in more precise fuel metering and higher engine performance than those of the conventional mixer type. On the other hands, leakage problem of LPLi system at the injector tip is a main obstacle for meeting more stringent future emission regulations because these phenomena might cause excessive amount of THC emission during cold and hot restart phase. The main focus of this paper is the development of a leaked fuel recirculation system, which can eliminate the leaked fuel at the intake system with the activated carbon canister. Leaked fuel level was evaluated by using a fast response THC analyzer and gas chromatography. The result shows that THC concentration during cold and hot restart stage decreases by over 60%, and recirculation system is an effective method to meet the SULEV standard of the LPLi engine.

Characteristics of Atmospheric Concentrations of Toxic Volatile Organic Compounds in Korea (II) - Seasonal and Locational Variations (국내 대기 중 독성 휘발성 유기화합물의 오염 특성(II) -계절 및 지역적 변동)

  • 백성옥;김배갑;박상곤
    • Environmental Analysis Health and Toxicology
    • /
    • v.17 no.3
    • /
    • pp.207-217
    • /
    • 2002
  • This study was designed to investigate the characteristics of atmospheric concentrations of toxic volatile organic compounds (VOCs) in Korea. Target compounds included 1,3-butadiene, aromatics such as BTEX, and a number of carbonyl compounds. In this paper, as the second part of the study, the seasonal and locational concentrations of atmospheric VOCs were evaluated. Sampling was conducted seasonally at seven sampling sites. each of them representing a large urban area (commercial and residential), a small urban area (commercial and residential), an industrial area (a site within the complex and a residential), and a background place in Korea. In general, higher concentrations were found in the petro-chemical industrial site than other sites, while VOCs measured in commercial (heavy -traffic) sites were higher than residential sites. Seasonality of VOCs concentrations were not so much clear as other combustion related pollutants such as sulfur dioxide, indicating that the VOCs are emitted from a variety of sources, not only vehicle exhaust and point sources but fugitive emissions. Except the industrial site, the concentrations of VOCs measured in this study do not reveal any serious pollution status, since the levels did not exceed any existing ambient standards in the U.K. and/or Japan. However, the increasing number of petrol -powered vehicles and the rapid industrialization in Korea may result in the increased levels of VOCs concentrations in many large urban areas in the near future, if there is no appropriate programme implemented for the control of these compounds.

On the Alternative Incineration Technologies for the Treatment of Hazardous Waste (유해폐기물 처리용 소각 대체기술 동향)

  • Yang, Hee-Chul;Cho, Yung-Zun;Eun, Hee-Chul;Kim, Eung-Ho
    • Korean Chemical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.319-327
    • /
    • 2007
  • Incineration has been regarded as the best developed technology available for organically hazardous waste. However, permitting and siting incinerators to treat hazardous waste such as a waste containing PCBs is very difficult due to the public concerns associated with toxic air emissions. Recently, a lot of alternatives to an incineration have been developed and these technologies have the potential of alleviating public concerns by decreasing emissions of hazardous materials such as dioxins and furans. This paper reviews currently available alternative incineration technologies for various hazardous waste streams. Various categories of non-thermal and thermal alternative incineration technologies have been evaluated in terms of their process operating condition, applicability of a waste stream and their emission of secondary waste. Detailed descriptions of operating principles of several technologies are also provided.

Understanding Three-dimensional Printing Technology, Evaluation, and Control of Hazardous Exposure Agents (3D 프린팅 기술의 이해, 유해 인자 노출 평가와 제어)

  • Park, Jihoon;Jeon, Haejoon;Oh, Youngseok;Park, Kyungho;Yoon, Chungsik
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.3
    • /
    • pp.241-256
    • /
    • 2018
  • Objectives: This study aimed to review the characteristics of three-dimensional printing technology focusing on printing types, materials, and health hazards. We discussed the methodologies for exposure assessment on hazardous substances emitted from 3D printing through article reviews. Methods: Previous researches on 3D printing technology and exposure assessment were collected through a literature review of public reports and research articles reported up to July 2018. We mainly focused on introducing the technologies, printing materials, hazardous emissions during 3D printing, and the methodologies for evaluation. Results: 3D printing technologies can be categorized by laminating type. Fused deposition modeling(FDM) is the most widely used, and most studies have conducted exposure assessment using this type. The printing materials involved were diverse, including plastic polymer, metal, resin, and more. In the FDM types, the most commonly used material was polymers, such as acrylonitrile-butadiene-styrene(ABS) and polylactic acids(PLA). These materials are operated under high-temperature conditions, so high levels of ultrafine particles(mainly nanoparticle size) and chemical compounds such as organic compounds, aldehydes, and toxic gases were identified as being emitted during 3D printing. Conclusions: Personal desktop 3D printers are widely used and expected to be constantly distributed in the future. In particular, hazardous emissions, including nano sized particles and various thermal byproducts, can be released under operation at high temperatures, so it is important to identify the health effects by emissions from 3D printing. Furthermore, appropriate control strategies should be also considered for 3D printing technology.

Effect of the Properties of Diesel Engine Oil and Aging on Exhaust Gases and DPF (경유엔진용 윤활유의 성상 및 열화가 배출가스 및 후처리 장치에 미치는 영향 연구)

  • Kim, JeongHwan;Kim, KiHo;Lee, JungMin
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.292-299
    • /
    • 2018
  • The objective of this research is to investigate the impact of engine oil aging on PM(Particulate Matter), exhaust gases, and DPF. It is widely known that the specification of a lubricant and its consumption in an ICE considerably influences the release of regulated harmful emissions under normal engine operating conditions. Considering DPF clogging phenomena associated with lubricant-derived soot/ash components, a simulated aging mode is designed for DPF to facilitate engine dynamometer testing. A PM/ash accumulation cycle is developed by considering real-world engine operating conditions for the increment of engine oil consumption and natural DPF regeneration for ash accumulation. The test duration for DPF aging is approximately 300 h with high- and low-SAPs engine oils. Detailed engine lubricant properties of new and aged oils are analyzed to evaluate the effect of engine oil degradation on vehicle mileage. Furthermore, physical and chemical analyses are performed using X-CT, ICP, and TGA/DSC to quantify the engine oil contribution on the PM composition. This is achieved by sampling with various filters using specially designed PM sampling equipment. Using high SAPs engine oil causes more PM/ash accumulation compared with low SAPs engine oils and this could accelerate fouling of the EGR in the engine, which results in an increase in harmful exhaust gas emissions. These test results on engine lubricants under operating conditions will assist in the establishment of regulated and unregulated toxic emissions policies and lubricant quality standards.

Biological Toxicity Changes of Mercaptoacetic Acid and Mercaptopropionic Acid Upon Coordination onto ZnS:Mn Nanocrystal

  • Kong, Hoon-Young;Hwang, Cheong-Soo;Byun, Jong-Hoe
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.657-662
    • /
    • 2012
  • Mercaptoacetic acid (MAA) and mercaptopropionic acid (MPA) capped ZnS:Mn nanocrystals were synthesized and their physical characteristics were examined by XRD, HR-TEM, EDXS, and FT-IR spectroscopy. The optical properties of the MPA capped ZnS:Mn nanocrystals dispersed in aqueous solution were also measured by UV/Vis and solution photoluminescence (PL) spectra, which showed a broad emission peak around 598 nm (orange light emissions) with calculated relative PL efficiency of 5.2%. Comparative toxicity evaluation of the uncoordinated ligands, MAA and MPA, with the corresponding ZnS:Mn nanocrystals revealed that the original ligands significantly suppressed the growth of wild type E. coli whereas the ligandcapped nanocrystals did not show significant toxic effects. The reduced cytotoxicity of the conjugated ZnS:Mn nanocrystals was also observed in NIH/3T3 mouse embryonic fibroblasts. These results imply that potential toxicities of the capping ligands can be neutralized on ZnS:Mn surface.

A Study on the VOCs Emission Characteristics by the Light Duty Diesel and LPG Fueled Vehicles (소형승합차량 및 RV차량의 휘발성 유기 화합물 배출특성 변화에 관한 연구)

  • Eom, Myung-Do;Ryu, Jung-Ho;Han, Jong-Su;Lyu, Young-Sook;Kim, Dae-Wook;Kim, Jong-Choon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.8-13
    • /
    • 2008
  • Emissions from automobiles have long been considered a prime source of pollutants involved in smog formation and ozone production. Especially VOCs are associated with serious environmental problems such as photo-chemical smog as well as human health effects. Since motor vehicles are a major source of VOCs, estimating of emission from mobile source is the most important factor to control VOCs. VOCs are emitted from various pollution like motor vehicles, mobile and stationary source that has characteristics of toxicity, cancer-causing, bio-accumulation, durability in air and diffusion can exert a bad influence upon human health and environment. However we don't have any standard or regulation about VOCs emissions. This study is summarized as VOCs emission characteristics from in-use light-duty diesel and LPG fueled vehicles. The vehicle exhaust-gas test mode is CVS cycle and nier-10 cycles that developed on EPA and National Institute of Environmental Research. TO-14 method (Toxic Organic) was chosen for VOCs analysis from EPA in USA. This study results will be useful when make a emission factor and rule making of emission standard about domestic VOCs emission for the improve to air condition.