• Title/Summary/Keyword: Total Load

Search Result 2,599, Processing Time 0.03 seconds

Development of Optimal Seismic Design Model for Inverted V-type Special Concentrically Braced Frames (역V형 특수중심가새골조의 최적내진설계 모델 개발)

  • Choi, Se-Woon;Yang, Hee-Jin;Park, Hyo-Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.1
    • /
    • pp.111-119
    • /
    • 2010
  • Many researchers have studied on the optimal seismic design with the development of the computer. So far the application structure of most researches on the optimal seismic design was almost the moment resisting frame. Because the braced frames are the representative lateral load resisting system with the moment resisting frames, it is estimated that the effect on the practice will be great if it can is provided a design guideline through the development of optimal seismic design model for the braced frames. The purpose of this study is to propose the optimal seismic design model for the inverted V-type special concentrically braced frames considering the buckling of braces. The objective functions of this are to minimize the structural weight and maximize the total dissipated energy of the structure and the constraints of this are the strength conditions for the column, beam, brace and inter-story drifts condition. To verify the proposed model, it is applied to 2D steel concentrically braced frames of 3-story and 9-story.

IN VITRO EVALUATION OF FRACTURE RESISTANCE OF VARIOUS THICKNESS FIBER- REINFORCED COMPOSITE INLAY FPD

  • Yi Yang-Jin;Yoon Dong-Jin;Park Chan-Jin;Cho Lee-Ra
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.6
    • /
    • pp.762-771
    • /
    • 2003
  • Statement of problem. In dentistry, the minimally prepared inlay resin-bonded fixed partial denture (FPD) made of new ceromer / fiber-reinforced composite (FRC) was recently introduced. However, the appropriate dimensions for the long-term success and subsequent failure strength are still unknown. Purpose. The aim of this study was to investigate the most fracture-resistible thickness combination of the ceromer / FRC using a universal testing machine and an AE analyzer. Material and Methods. A metal jig considering the dimensions of premolars and molars was milled and 56-epoxy resin dies, which had a similar elastic modulus to that of dentin, were duplicated. According to manufacturer's instructions, the FRC beams with various thicknesses (2 to 4 mm) were constructed and veneered with the 1 or 2 mm-thick ceromers. The fabricated FPDs were luted with resin cement on the resin dies and stored at room temperature for 72 hours. AE (acoustic emission) sensors were attached to both ends, the specimens were subjected to a compressive load until fracture at a crosshead speed of 0.5 mm/min. The AE and failure loads were recorded and analyzed statistically. Results. The results showed that the failure strength of the ceromer/FRC inlay FPDs was affected by the total thickness of the connectors rather than the ceromer to FRC ratio or the depth of the pulpal wall. Fracture was initiated from the interface and propagated into the ceromer layer regardless of the change in the ceromer / FRC ratio. Conclusion. Within the limitations of this study, the failure loads showed significant differences only in the case of different connector thicknesses, and no significant differences were found between the same connector thickness groups. The application of AE analysis method in a fiber-reinforced inlay FPD can be used to evaluate the fracture behavior and to analyze the precise fracture point.

A Study on Energy Reduction in an Outdoor Air Conditioning System for Semiconductor Manufacturing Cleanrooms Using Water Spray Humidification (반도체 클린룸용 외기공조시스템의 수분무 가습을 이용한 에너지절감에 관한 연구)

  • Song, Won-Il;Kim, Ki-Cheol;Yoo, Kyung-Hoon;Shin, Dae-Kun;Tae, Kyung-Eung;Kim, Yong-Sik;Park, Dug-Jun
    • Particle and aerosol research
    • /
    • v.13 no.2
    • /
    • pp.65-77
    • /
    • 2017
  • In recent large-scale semiconductor manufacturing cleanrooms, the energy consumption in outdoor air conditioning (OAC) systems to heat, humidify, cool and dehumidify outdoor air(OA) represents about 40~50 % of the total cleanroom power consumption required to maintain cleanroom environment. Therefore, the assessment of energy consumption in outdoor air conditioning systems is essential for reducing the outdoor air conditioning load for a cleanroom. In the present study, an experiment with an outdoor air flow rate of $1,000m^3/h$ was conducted to compare the energy consumption in steam humidification, simple air washer, exhaust air heat recovery type air washer and dry cooling coil(DCC) return water heat recovery type air washer OAC systems. Besides, a numerical analysis was carried out to evaluate the annual energy consumption of the aforementioned four OAC systems. It was shown that the simple air washer, exhaust air heat recovery type air washer and DCC return water heat recovery type air washer OAC systems using water spray humidification were more energy-efficient than the steam humidification OAC system. Furthermore the DCC return water heat recovery type air washer OAC system was the most energy-efficient.

A qualitative evaluation method for engine and its operating-envelope using GSP (Gas turbine Simulation Program)

  • Kyung, Kyu-Hyung;Jun, Yong-Min;Yang, Soo-Seok;Choi, Dong-Whan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.848-853
    • /
    • 2004
  • Regarding to the project SUAV (Smart Unmanned Aerial Vehicle) in KARI (Korea Aerospace Research Institute), several engine configurations has been evaluated. However it's not an easy task to collect all the necessary data of each engine for the analysis. Usually, some kind of modeling technique is required in order to determine the unknown data. In the present paper a qualitative method for reverse engineering is proposed, in order to identify some design patterns and relationships between parameters. The method can be used to estimate several parameters that usually are not provided by the manufacturer. The method consists of modeling an existing engine and through a simulation, compare its transient behavior with its operating envelope. In the simulation several parameters such as thermodynamics, performance, safety and mechanics concerning to the definition of operation-envelope, have been discussed qualitatively. With the model, all engine parameters can be estimated with acceptable accuracy, making possible the study of dependencies among different parameters such as power-turbine total inertia, TIT, take-off time and part load, in order to check if the engine transient performance is within the design criteria. For more realistic approach and more detailed design requirements, it will be necessary to enhance the compressor map first, and more realistic estimated values must be taken into account for intake-loss, bleed-air and auxiliary power extraction. The relative importance of these “unknown” parameters must be evaluated using sensitivity analysis in the future evaluation. Moreover, fluid dynamics, thermal analysis and stress analysis necessary for the resulting life assessment of en engine, will not be addressed here but in a future paper. With the methodology presented in the paper was possible to infer the relationships between operation-envelope and engine parameters.

  • PDF

3-Dimensional Analysis of the Steam-Hydrogen Behavior from a Small Break Loss of Coolant Accident in the APR1400 Containment

  • Kim Jongtae;Hong Seong-Wan;Kim Sang-Baik;Kim Hee-Dong;Lee Unjang;Royl P.;Travis J. R.
    • Nuclear Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.24-35
    • /
    • 2004
  • In order to analyze the hydrogen distribution during a severe accident in the APR1400 containment, GASFLOW II was used. For the APR1400 NPP, a hydrogen mitigation system is considered from the design stage, but a fully time-dependent, three-dimensional analysis has not been performed yet. In this study GASFLOW code II is used for the three-dimensional analysis. The first step to analysis involving hydrogen behavior in a full containment with the GASLOW code is to generate a realistic geometry model, which includes nodalization and modeling of the internal structures such as walls, ceilings and equipment. Geometry modeling of the APR1400 is conducted using GUI program by overlapping the containment cut drawings in a graphical file format on the mesh view. The total number of mesh cells generated is 49,476. And the calculated free volume of the APR1400 containment by GASFLOW is almost the same as the value from the GOTHIC modeling. A hypothetical SB-LOCA scenario beyond design base accident was selected to analyze the hydrogen behavior with the hydrogen mitigation system. The source of hydrogen and steam for the GASFLOW II analysis is obtained from a MAAP calculation. Combustion pressure and temperature load possibilities within the compartments used in the GOTHIC analysis are studied based on the Sigma-Lambda criteria. Finally the effectiveness of HMS installed in the APR1400 containment is evaluated from the point of severe accident management

A Study on the Variable Structure Adaptive Control Systems for a Nuclear Reactor (가변구조 적응제어이론에 의한 원자로부하추종 출력제어에 관한 연구)

  • Sung Ha Kwon;Hee Young Chun;Hyun Kook Shin
    • Nuclear Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.247-255
    • /
    • 1985
  • This paper describes a new method for the design of variable structure model-following control systems(VSMFC). This design concept is developed using the theory of variable structure systems (VSS) and slide mode. The new results are presented on the sliding control methodology to achieve accurate tracking for a class of nonlinear, multi-input multi-output(MIMO), time varying systems in the presence of parameter variations. The design requires little computational effort. The dynamic response is insensitive to parameter variations. The feasibility and the advantages of the method are illustrated by applying it to a 1000 MWe boiling water reactor(BWR). The control is studied in the range of 85%∼90% of rated power for load-following control. A set of 12 nonlinear differential equations is used to simulate the total plant. A 6-th order linear model has been developed from these equations at 85% of rated power. The obtained controller is shown by simulations to be able to compensate for a plant parameter variation over a wide power range.

  • PDF

An Optimization of Process Planning around Quays based on the Yard Customized GIS and the Simulator (조선 전용 GIS와 안벽 시뮬레이터를 이용한 후행 중일정 최적화)

  • Ruy, Won-Sun;Hwang, Ho-Jin;Park, Chang-Kyu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.2
    • /
    • pp.97-103
    • /
    • 2015
  • This paper has focused on the middle term process planning around quays based on the prefixed long-term plan of the product mixed ships. Recently, the order rate of high add-value ships in domestic shipyards has been sharply increased and the spending time at quays is accordingly on an increasing trend. For proper and practical process planning related to quays, it has to be closely connected with a long-term plan and product calendar, erection network and result of ship allocation around quays. Moreover, it is also required to include the integrated consideration of the whole process of a yard, each ship, and each team respectively. The most distinguishing feature of this study is that it would run on the ship allocation simulator and GIS framework in order not to be limited to the specific one yard and the readers can figure out the optimization formulation containing the work load leveling and a different approach from PERT/CPM. The proposed approach reflected all requirements from the department of process planning and management in a shipyard, and the analysis of the results has explained its performance of the optimization result with the examples of total 43 ships under construction from 2008 to 2013.

Verification of Equipment Number Equation Considering New Types of Ships (선종 변화를 고려한 의장수 계산식의 적합성 검증)

  • Ku, Namkug;Ha, Sol;Lee, Kyu-Yeul;Yang, Jin-Hyeck;Bae, Jae-Ryu;Lee, Soo-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.2
    • /
    • pp.119-124
    • /
    • 2015
  • The purpose of this research is a verification of the current equation for calculating equipment number and a suggesting a method for development of a rational new equation. The equation for calculating equipment number consists of total surface area of a ship that fluid resistance act on. Equipment number determines the specification of anchoring and mooring equipment such as anchor weight, anchor chains length and diameter, the number, length and breaking load of tow lines and mooring lines. The equation for equipment number calculation is basically derived considering x, y components of a wind and current force acting on a ship. But this equation is only based on a tanker, which was main type of ships when the equation was derived. Therefore, verification of the equation is required for other types of ships, such as container carrier, LNG carrier, etc. Therefore, in this research, we find out the equation for equipment number calculation should be revised for other types of ships especially the container carrier, by comparing wind and current force acting on a ship to holding force of an anchor and anchor chains, which are selected based on the equipment number.

A Study on the Optimal Window Floor Ratio Acording to Transmitance of Dye Sensitized Solar Cell(DSSC) by Analysis of Daylighting perfomance and Glare Index of Transmitance (염료감응태양전지의 투과율에 따른 채광성능 및 현휘지수 분석을 통한 적정창면적비에 대한 연구)

  • Oh, Myung-Hwan;Sim, Se-Ra;Lee, Chul-Sung;Chin, Kyung-Il;Yoon, Jong-Ho
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.92-97
    • /
    • 2009
  • It is more necessary to consider the various factors for developmenting visible PV module of alternative window than traditional PV module. It must have sufficient performance which is Tvis, daylighting, daylight factor, glare index. so that more needs to consider suitable plan and total evaluated technology. Under the this background. For using commonly a combination BIPV module system and Daylinghting that can alternative architectural window, our goal on this study is drawing proper window area ratio as the window by analyzing lighting performance and glare index depending on transmittance of DSSC. On this study, we drew the result about window area ratio that can apply in the building when applying DSSC in the window. In situation that window is alternated as curtain wall in atrium that has big Widow area, if applying red 15.8% DSSC of low transmittance, it is expect to proper because it is suitable illumination standard and doesn't occur a discomfort glare. In case of office, we propose to apply red 33.2% or blue 35.2% DSSC of high transmittance for no affecting lighting load. we expect to contribute to select proper and effective window when applying the window in the building by drawing the window area ratio that can apply in thee building depending on transmittance of DSSC and offering the glare index data.

  • PDF

Characteristics of NPS Pollutants and Treatment of Stormwater Runoff in Paved Area during a Storm (강우시 포장지역의 비점오염물질 유출 및 저감특성)

  • Son, Hyun-Geun;Lee, So-Young;Maniquiz, Marla C.;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.11 no.2
    • /
    • pp.55-66
    • /
    • 2009
  • The increase of pollutant loadings from nonpoint sources affect the water quality of the major rivers in Korea. Consequently, the need for managing the nonpoint source (NPS) pollution becomes the main concern of the Korean Ministry of Environment (MOE). Recently, the policy was changed from pollutant concentration-restricting approach to the total maximum daily load (TMDL) approach to improve the water quality and protect the aquatic ecosystem. Part of the program is the construction of Best Management Practice (BMP) pilot facilities basically to control NPS. Most of the BMPs adopted were foreign technologies which could not be properly employed in the country due to some limitations such as climate, watershed characteristics, etc. In other words, to be able to apply the BMPs, research on its applicability is necessary. In this study, a three-year monitoring has been conducted to assess the treatment performance of the BMP installed in highway toll plaza and parking lot. The data gathered aid in the characterization of NPS pollutants in runoff and estimation of the pollutant removal efficiency of the BMP. The results will be used for the future implementation of BMP in different land uses as well as for the determination of optimum operation and maintenance.

  • PDF