• Title/Summary/Keyword: Total Design

Search Result 9,862, Processing Time 0.039 seconds

Design and Numerical Analysis of Swirl Generator in Internal Duct using Delta Wing with Vortex Flap (와동 플랩 삼각날개를 이용한 관내 와류 발생장치 설계 및 수치해석)

  • Kim, Myung-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.9
    • /
    • pp.761-770
    • /
    • 2007
  • In this study, a swirl generator using delta wing was developed in order to simulate total pressure distortion and flow angle distortion. The delta wing was used for $65^{\circ}$-degree sweep back angle to satisfy the design performance for vortex core position, total pressure distortion(DC90) and swirl angle. To extend the swirling flow area, a $45^{\circ}$-degree vortex flap have applied to the delta wing. The swirl generator satisfied the design requirement of distortion coefficient in the flow distortion test to be applied to the simulation duct, and the performances of distortion for vortex core position and swirl angle using CFD(computational fluid dynamics) analysis results that was verified by flow distortion test results.

COMPUTATION OF COMPLEX STIFFNESS OF INFLATED DIAPHRAGM IN PNEUMATIC SPRINGS BY USING FE CODES (상용 유한요소해석 프로그램을 이용한 공압 스프링 내 다이아프램의 복소강성 산출)

  • Lee, Jeung-Hoon;Kim, Kwang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.844-849
    • /
    • 2006
  • Accurate modeling of complex dynamic stiffness of the pneumatic springs is crucial for an efficient design of vibration isolation tables for precision instruments such as optical devices or nano-technology equipments. Besides pressurized air itself, diaphragm made of rubber materials, essentially employed for prevention of air leakage, plays a significant contribution to the total complex stiffness. Therefore, effects of the diaphragm should be taken care of precisely. The complex stiffness of an inflated diaphragm is difficult to predict or measure, since it is always working together with the pressurized air. In our earlier research, the complex stiffness of a diaphragm was indirectly estimated simply by subtracting stiffness of the pressurized air from measurement of the total complex stiffness for a single chamber pneumatic spring. In order to reflect dynamic stiffness of inflated diaphragm on the total stiffness at the initial design or design improvement stage, however, it is required to be able to predict beforehand. In this presentation, how to predict the complex stiffness of inflated rubber diaphragm by commercial FE codes(e.g. ABAQUS) will be discussed and the results will be compared with the indirectly measured values.

  • PDF

Design of a Fresnel Lens for a Solar End-pumped Solid-state Laser

  • Ou, Mingyu;Hu, Pian;Lan, Lanling;Liu, Yan;Zhou, Jun;Shi, Xiaotao
    • Current Optics and Photonics
    • /
    • v.4 no.5
    • /
    • pp.441-445
    • /
    • 2020
  • A novel design for a Fresnel lens for a solar end-pumped laser is demonstrated in this paper. The new hybrid Fresnel lens includes two parts, inner and outer. The inner part is a twice-total-internal-reflection and vertical-transmission lens. The outer part is a once-total-reflection and vertical-transmission lens. The radius of the Fresnel lens is 600 mm, and its focal length is 750 mm. The concentrating performance of the Fresnel lens is examined using TracePro. The results show that the concentration efficiency has been greatly improved. The total concentration efficiency of the hybrid Fresnel lens reaches 73.2% when the radius of the laser rod is 3 mm. This design can simplify the concentration system of a solar end-pumped solid-state laser.

Estimation of Nonpoint Discharge Coefficient for the Management of Total Maximum Daily Load - Rainfall Discharge Ratio on the Specific Design Flow (수질오염총량관리를 위한 비점배출계수 산정 - 특정 기준유량 시기의 강우배출비)

  • Park, Jundae;Park, Juhyun;Rhew, Doughee;Jeong, Dongil
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.4
    • /
    • pp.452-457
    • /
    • 2008
  • Nonpoint source (NPS) pollution is caused by rainfall moving over and through the ground. As the runoff moves, it picks up and carries away various pollutants from NPS. The discharge pattern of NPS pollutant loads is affected by the distribution of the rainfall during the year. This study analysed relationship between the rainfall event and the stream flow rate, and estimated the rainfall discharge ratio on the specific design flow which can be used as nonpoint discharge coefficient for the estimation of NPS pollution load. It is considered that nonpoint discharge coefficient can be effectively used for the calculation of NPS pollution load at the time of water quality modelling for the management of Total maximum daily load (TMDL).

The Comparison of Curricular in Fashion Field between Korean and American Universities (한.미 4년제 대학의 패션관련학과 교과과정 비교분석 연구)

  • Kim, Sun-Hwa
    • The Korean Journal of Community Living Science
    • /
    • v.22 no.4
    • /
    • pp.591-597
    • /
    • 2011
  • The objective of the study was to compare the curricular in fashion field between Korean and American universities. Initially, curricular data of Korean universities were collected through the internet, telephone calls and e-mails from March to May, 2006. The data was then modified in August, 2009. Data from American universities were only collected through the internet from January to March, 2009. The name of the department, total credits opened, credits opened for each area and so on, were analyzed using descriptive statistics. There were 20 national universities and 61 private universities with fashion related departments in Korea, while 87 public universities and 21 private universities in the USA. The name of'Fashion Design' in the departments was prevalent in 40 universities in Korea. On the contrary,'Fashion Marketing' was the most dominant name in 31 universities in the USA. Ninety percent of the universities in Korea opened over eighty to ninety total credits, but 83% of American universities opened under eighty to ninety total credits. Most universities in Korea opened many credits for construction, design/ aesthetics, marketing and textile areas more than those in the USA.

Study on the analyze brassiere pattern by brand

  • Park, You-Shin;Choi, Young-Soon
    • Journal of Fashion Business
    • /
    • v.10 no.6
    • /
    • pp.122-130
    • /
    • 2006
  • The purpose of this study is to develop the appropriate brassiere pattern for women. Total of 6 brands with same design and 75A, 80A size brassieres(total 12 brassieres) were compared and analyzed for pattern, cup size and patterns. SPSS 10.1 statistic process was used for data analysis. The outcom of this study is summarized as follows. Total length of brassiere by grade were performed smaller than the standard difference 5cm. For 1/2 front cover length, There were no significant differences between 75 and 80. The reason for lower line of wing is shorter than upper line of wing is because side support is cut side ways considering lower line of wing is sewn more toward front than upper line of wing. Even it is same A cup size most cup related sizes become larger according to underbust comparing with cup capacity, they range from 146.67cc to 172.83cc for same A cups. Among same A cups with difference underbust there was average of 26.16cc differences. For relations of material, sewing technology and expansion rate, all 6 brands had zigzag type sewing for upper line tape. For every 0.3cm height, there were $17{\sim}21$ stitches. When urethane mixture is similar expansion rate is higher while number of 1 inch zigzag are high. For elasticity, zigzag stitch expand side ways for more expansion.

Construction for the Design Project Management System(DPMS) (디자인 프로젝트 관리 시스템(DPMS)의 구성)

  • 우흥룡
    • Archives of design research
    • /
    • v.12 no.3
    • /
    • pp.227-234
    • /
    • 1999
  • We paid attention to the fact that a project will always tend to increase in size even if its scope is narrowing. The complexities and multidisciplinary aspects of projects require that the many parts should be put together so that the prime objectives- performance, time, and cost- are met. These aspects lead to the use of teams to solve problems that used to be solved by individuals. Firstly, We surveyed the design companies and their clients on the design projects, and categorized the design task into 5 phases, that are marketing, planning, idea development, presentation, and follow-up. Among the phases, the presentation has the most difficult task, longest processing time, and highest cost, whereas idea development phase has relatively low cost, longer processing time, and more difficult task. Most of the companies used to be faced several bottlenecks on their design projects - time control, budget control, and resource control. Secondly, for improving the project managing process, we adopted that dividing and analyzing the sub critical paths may help in the effective managing.(Badiru, Adedeji B., 1995) Some critical paths require almost as much attention as the critical path since they have a high potential of becoming critical when changes occur in the network. Therefrom we suggest the Total task weight(Gt) as a management formula for the design project management.${Gt=\mathrm{T}\ast\leftthreetimes\ast1/100}$<\TEX> ( Gt = Total task weight, mathrm{T} = Task Weight, \leftthreetimes= Criticality ) Thirdly, In order to support to managing for the design projects, we set up an application system, which is graphically planning and implementing a complex undertaking. It is helpful to make the control of a project easy. The DPMS(Design Project Management System), which has two sub system. One is Project Screening System(PSS), and another Project Managing System(PMS). In PMS, we divided the design project into three modules; Project Planning, Project Implementation, and Project Evaluation. As a result, the DPMS will contribute to supply the control of a project easily and effectively. Also teams are used for making decisions and taking action with the DPMS. But we need to get further studies on the relationships between the whole project and its tasks.

  • PDF

OPTIMAL DESIGN FOR CAPACITY EXPANSION OF EXISTING WATER SUPPLY SYSTEM

  • Ahn, Tae-Jin;Lyu, Heui-Jeong;Park, Jun-Eung;Yoon, Yong-Nam
    • Water Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.63-74
    • /
    • 2000
  • This paper presents a two- phase search scheme for optimal pipe expansion of expansion of existing water distribution systems. In pipe network problems, link flows affect the total cost of the system because the link flows are not uniquely determined for various pipe diameters. The two-phase search scheme based on stochastic optimization scheme is suggested to determine the optimal link flows which make the optimal design of existing pipe network. A sample pipe network is employed to test the proposed method. Once the best tree network is obtained, the link flows are perturbed to find a near global optimum over the whole feasible region. It should be noted that in the perturbation stage the loop flows obtained form the sample existing network are employed as the initial loop flows of the proposed method. It has been also found that the relationship of cost-hydraulic gradient for pipe expansion of existing network affects the total cost of the sample network. The results show that the proposed method can yield a lower cost design than the conventional design method and that the proposed method can be efficiently used to design the pipe expansion of existing water distribution systems.

  • PDF

Harmony search based, improved Particle Swarm Optimizer for minimum cost design of semi-rigid steel frames

  • Hadidi, Ali;Rafiee, Amin
    • Structural Engineering and Mechanics
    • /
    • v.50 no.3
    • /
    • pp.323-347
    • /
    • 2014
  • This paper proposes a Particle Swarm Optimization (PSO) algorithm, which is improved by making use of the Harmony Search (HS) approach and called HS-PSO algorithm. A computer code is developed for optimal sizing design of non-linear steel frames with various semi-rigid and rigid beam-to-column connections based on the HS-PSO algorithm. The developed code selects suitable sections for beams and columns, from a standard set of steel sections such as American Institute of Steel Construction (AISC) wide-flange W-shapes, such that the minimum total cost, which comprises total member plus connection costs, is obtained. Stress and displacement constraints of AISC-LRFD code together with the size constraints are imposed on the frame in the optimal design procedure. The nonlinear moment-rotation behavior of connections is modeled using the Frye-Morris polynomial model. Moreover, the P-${\Delta}$ effects of beam-column members are taken into account in the non-linear structural analysis. Three benchmark design examples with several types of connections are presented and the results are compared with those of standard PSO and of other researches as well. The comparison shows that the proposed HS-PSO algorithm performs better both than the PSO and the Big Bang-Big Crunch (BB-BC) methods.

Optimal design of spoke double-layer cable-net structures based on an energy principle

  • Ding, Mingmin;Luo, Bin;Han, Lifeng;Shi, Qianhao;Guo, Zhengxing
    • Structural Engineering and Mechanics
    • /
    • v.74 no.4
    • /
    • pp.533-545
    • /
    • 2020
  • An optimal design method for a spoke double-layer cable-net structure (SDLC) is proposed in this study. Simplified calculation models of the SDLC are put forward to reveal the static responses under vertical loads and wind loads. Next, based on an energy principle, the relationship among the initial prestress level, cross-sectional areas of the components, rise height, sag height, overall displacement, and relative deformation is proposed. Moreover, a calculation model of the Foshan Center SDLC is built and optimized. Given the limited loading cases, material properties of the components, and variation ranges of the rise height and sag height, the self-weight and initial prestress level of the entire structure can be obtained. Because the self-weight of the cables decreases with increasing of the rise height and sag height, while the self-weight of the inner strut increases, the total weight of the entire structure successively exhibits a sharp reduction, a gradual decrease, a slow increase, and a sharp increase during the optimization process. For the simplified model, the optimal design corresponds to the combination of rise height and sag height that results in an appropriate prestress level of the entire structure with the minimum total weight.