• Title/Summary/Keyword: Torsional stiffness

Search Result 360, Processing Time 0.027 seconds

A Study on the Axial and Torsional Coupled Vibration of Marine propeller shafts (선박 추진축의 종 비틂 연성진동에 관한 연구)

  • 김용철;정태영;전윤호
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.71-83
    • /
    • 1994
  • The axial and torsional coupled vibration of marine propeller shafts can be mainly caused by actual shape of the crank shaft and hydrodynamic forces and moments due to propellers : the former leads to stiffness matrix coupling and the latter leads to inertia and damping matrix coupling. In the present paper the characteristics of the coupled vibration of marine propeller shafts due to hydrodynamic coupling is investigated in details. First, the modelling procedure of the system and analysis technique are also developed. To verify the present method the numerical calculations were also performed. Finally, the results were compared with existing data in the literature and it was found to be in good agreement.

  • PDF

THICKNESS OPTIMIZATION OF AN AUTOMOBILE BODY FOR NATURAL FREQUENCY MAXIMIZATION

  • Panganiban, Henry;Jang, Gang-Won;Chung, Tae-Jin;Choi, Young-Min
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.572-577
    • /
    • 2007
  • The paper presents design optimization of an automobile body for dynamic stiffness improvement. The thicknesses of plates making-up the monocoque body of an automobile were employed as design variables for optimization and the objective was to increase the first torsional and bending natural frequencies. By allotting one design variable to each plate of the body, compared to previous works based on element-wise design variables, design space of optimization was reduced to a large extent and numerical instabilities such as checkerboard pattern was efficiently evaded. The method resulted to a considerable amount of increase in the automobile body's torsional and bending natural frequencies. Considering manufacturability of the optimized result, the converged values of plate thicknesses were approximated to commercially-available values by appropriately reflecting their design sensitivities.

  • PDF

Influence of near-fault ground motions characteristics on elastic seismic response of asymmetric buildings

  • Tabatabaei, R.;Saffari, H.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.4
    • /
    • pp.489-500
    • /
    • 2011
  • The elastic seismic response of plan-asymmetric multi storey steel-frame buildings is investigated under earthquake loading with particular emphasis on forward-rupture directivity and fling records. Three asymmetric building systems are generated with different torsional stiffness and varying static eccentricity. The structural characteristic of these systems are designed according to UBC 97 code and their seismic responses subjected to a set of earthquake records are obtained from the response history analysis (RHA) as well as the linear static analysis (LSA). It is shown that, the elastic torsional response is influenced by the intensity of near-fault ground motions with different energy contents. In the extreme case of very strong earthquakes, the behaviour of torsionally stiff buildings and torsionally flexible buildings may differ substantially due to the fact that the displacement envelope of the deck depends on ground motion characteristics.

Analysis and tests of flexibly connected thin-walled channel frames

  • Tan, S.H.;Seah, L.K.
    • Structural Engineering and Mechanics
    • /
    • v.2 no.3
    • /
    • pp.269-284
    • /
    • 1994
  • The analysis and tests of thin-walled channel frames including nonlinear flexible or semi-rigid connection behaviour is presented. The semi-rigid connection behaviour is modelled using a mathematical approximation of the connection flexibility-moment relationship. Local instability such as local buckling and torsional flexural buckling of the member are included in the analysis. The full response of the frame, up to the collapse load, can be predicted. Experimental investigation was carried out on a series of simple double storey symmetrical frames with the purpose of verifying the accuracy and validity of the analysis. Agreement between the theoretical and experimental results is acceptable. The investigation also shows that connection flexibility and local instability such as local buckling and torsional flexural buckling can affect the behaviour and strength of thin-walled frames significantly. The results can also provide further insight into the advanced study of practical structures where interaction between flexible connections and phenomenon associated with thin-walled members are present.

Inelastic Analysis of Space Steel Frames Considering Spread of Plasticity (소성영역 진전효과를 고려한 공간 뼈대구조의 비탄성 해석)

  • 한재영;김성보
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.45-52
    • /
    • 2003
  • A finite element procedure to estimate ultimate strength of space frames considering spread of plasticity is presented. The improved displacement field is introduced based on inclusion of second order terms of finite rotations. All the nonlinear terms due to bending and torsional moment as well as axial force are precisely considered. The concept of plastic hinge is introduced and the incremental load/displacement method is applied for the elasto-plastic analysis. The initial yield surface is defined based on the residual stress and the full plastification surface is considered under the combined action of axial force, bending and torsional moments. The elasto-plastic stiffness matrices are derived using the flow rule and the normality condition of the limit function. Finite element solutions for ultimate strength of space frames are compared with available solutions and experimental results.

  • PDF

Free Vibrations of Horizontally Curved Beams with Rotatory Inertia and Shear Deformation (회전관성과 전단변형을 고려한 수평 곡선보의 자유진동)

  • 이병구;모정만;이태은;안대순
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.1
    • /
    • pp.63-69
    • /
    • 2003
  • The ordinary differential equations governing free vibrations of elastic horizontally curved beams are derived, in which the effects of rotatory inertia and shear deformation as well as the effects of both vertical and torsional inertias are included. Frequencies and mode shapes are computed numerically for parabolic curved beams with the hinged-hinged, hinged-clamped and clamped-clamped ends. Comparisons of natural frequencies between this study and ADINA are made to validate the theories and numerical methods developed herein. The lowest three natural frequency parameters are reported. with and without the effects of rotatory inertia and shear deformation. as functions of the three non-dimensional system parameters: the horizontal rise to span length ratio. the slenderness ratio and the stiffness parameter.

The Study on Vibration Characteristics of Rub-impact Rotor Based on Virtual Prototype Technology and Experiments

  • HAN, Tian;YIN, Zhongjun;WANG, Jianfeng;Choi, ByeongKeun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.382-387
    • /
    • 2012
  • A virtual prototype (VP) model of the rotor-to-stator rub of the rotor system is established to study the nonlinear vibration characteristics. The non-linear bearing stiffness is considered to approximate to an actual system in the model. In order to validate the effectiveness of the proposed approach, a special structure of stator is designed to simulate different kinds of rub condition. The results of experiment are well consistent with the results of simulation by VP. The vibration characteristics of rub-impact are well observed by VP model under different conditions. Based on the validated model, the torsional vibration of rub-impact is discussed. The contribution of this paper is to provide one new approach to study rub-impact problem. Based on the validated VP model, the more research can be done for incident fault identification.

  • PDF

Response prediction of a 50 m guyed mast under typhoon conditions

  • Law, S.S.;Bu, J.Q.;Zhu, X.Q.;Chan, S.L.
    • Wind and Structures
    • /
    • v.9 no.5
    • /
    • pp.397-412
    • /
    • 2006
  • This paper presents the wind excited acceleration responses of a 50 m guyed mast under the action of Typhoon Dujuan. The response of the structure is reconstructed from using a full finite element model and an equivalent beam-column model. The wind load is modelled based on the measured wind speed and recommendations for high-rise structures. The nonlinear time response analysis is conducted using the Newton Raphson iteration procedure. Comparative studies on the measured and computed frequencies and acceleration responses show that the torsional vibration of the structure is significant particularly in the higher vibration modes after the first few bending modes. The equivalent model, in general, gives less accurate amplitude predictions than the full model because of the omission of torsional stiffness of the mast in the vibration analysis, but the root-mean-square value is close to the measured value in general with an error of less than 10%.

Probabilistic free vibration analysis of Goland wing

  • Kumar, Sandeep;Onkar, Amit Kumar;Manjuprasad, M.
    • International Journal of Aerospace System Engineering
    • /
    • v.6 no.2
    • /
    • pp.1-10
    • /
    • 2019
  • In this paper, the probabilistic free vibration analysis of a geometrically coupled cantilever wing with uncertain material properties is carried out using stochastic finite element (SFEM) based on first order perturbation technique. Here, both stiffness and damping of the system are considered as random parameters. The bending and torsional rigidities are assumed as spatially varying second order Gaussian random fields and represented by Karhunen Loeve (K-L) expansion. Here, the expected value, standard deviation, and probability distribution of random natural frequencies and damping ratios are computed. The results obtained from the present approach are also compared with Monte Carlo simulations (MCS). The results show that the uncertain bending rigidity has more influence on the damping ratio and frequency of modes 1 and 3 while uncertain torsional rigidity has more influence on the damping ratio and frequency of modes 2 and 3.

Nonlinear analysis of 3D reinforced concrete frames: effect of section torsion on the global response

  • Valipour, Hamid R.;Foster, Stephen J.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.4
    • /
    • pp.421-445
    • /
    • 2010
  • In this paper the formulation of an efficient frame element applicable for nonlinear analysis of 3D reinforced concrete (RC) frames is outlined. Interaction between axial force and bending moment is considered by using the fibre element approach. Further, section warping, effect of normal and tangential forces on the torsional stiffness of section and second order geometrical nonlinearities are included in the model. The developed computer code is employed for nonlinear static analysis of RC sub-assemblages and a simple approach for extending the formulation to dynamic cases is presented. Dynamic progressive collapse assessment of RC space frames based on the alternate path method is undertaken and dynamic load factor (DLF) is estimated. Further, it is concluded that the torsional behaviour of reinforced concrete elements satisfying minimum standard requirements is not significant for the framed structures studied.